本页使用了标题或全文手工转换

切丛

维基百科,自由的百科全书
跳转至: 导航搜索

数学上,一个微分流形M切丛(tangent bundle) T(M)是一个由M各點上切空間組成的向量丛,其總空間是各切空间的不交并集

T(M) = \coprod_{x\in M}T_x(M).

總空間T(M)每个元素都是一个二元组(x,v),其中v是在点x的切空间Tx(M)內的一枚向量。 切丛有自然的2n微分流形结构如下:

設:\pi\colon T(M) \to M\, 為自然的投影映射,将(x,v)映射到基点x; 若M是个n维流形,Ux的一个足夠小的邻域, φ :URn是一个局部坐标卡VUT(M)的前象VV=\pi^{-1}(U)\,)),则存有一个映射ψ : VRn × Rn:ψ(x, v) = (φ(x), dφ(v)). 这个映射定义了T(M)的一个坐标图。

背景知识见微分流形条目。

拓扑和光滑结构[编辑]

切丛带有一个自然的拓扑(不是不交并拓扑(disjoint union topology))以及微分结构,使得它自己成为一个流形。T(M)的维数是M的两倍。

每个n维向量空间的切空间是一个n维向量空间。那么作为一个集合,T(M)和M × Rn同构。但作为一个流形,T(M)并不总是和积流形M × Rn微分同胚。这在切丛是平凡的时候是真的。就象流形局部由欧几里得空间构造一样,切丛局部构造在M × Rn上。

M是一个n维流形,则它有一个图册Uα, φα)其中UαM中开集而

\phi_\alpha\colon U_\alpha \to \mathbb R^n

是一个同胚U上的这些局部坐标对于每个xU给出了TxMRn之间的一个同构。我们然后可以定义一个映射

\tilde\phi_\alpha\colon \pi^{-1}(U_\alpha) \to \mathbb R^{2n}

这是通过下式完成的

\tilde\phi_\alpha(x, v^i\partial_i) = (\phi_\alpha(x), v^1, \cdots, v^n)

我们用这些映射来定义T(M)上的拓扑和光滑结构。T(M)的子集A是开的当且仅当对于每个α,\tilde\phi_\alpha(A\cap U_\alpha)R2n中是开的。这样这些映射是T(M)的开子集和R2n的同胚,所以可以作为T(M)的光滑结构的坐标图。坐标图定义域的交集\pi^{-1}(U_\alpha\cap U_\beta)上的变换函数用相关的坐标变换的雅可比矩阵引出,所以是R2n的开子集间的光滑映射。

切丛是称为向量丛(自己是纤维丛的特例)的更一般的构造的特例。直接一点的说,n维流形M的切丛可以定义为一个M上的n阶向量丛,其变换函数由相应的坐标变换的雅可比矩阵给出。

向量场[编辑]

向量场是切丛的截面。

局部向量场[编辑]

局部向量场是切丛的局部截面。

向量场的层[编辑]

所有局部向量场的集合构成一个(sheaf)。

参见[编辑]

外部链接[编辑]

参考[编辑]

  • Jurgen Jost, Riemannian Geometry and Geometric Analysis, (2002) Springer-Verlag, Berlin ISBN 3-540-4267-2
  • Ralph Abraham and Jarrold E. Marsden, Foundations of Mechanics, (1978) Benjamin-Cummings, London ISBN 0-8053-0102-X
  • Charles W. Misner, Kip S. Thorne, John Archibald Wheeler, Gravitation, (1970) W.H. Freeman, New York; ISBN 0-7167-0344-0.