本页使用了标题或全文手工转换

CPT對稱

维基百科,自由的百科全书
跳转至: 导航搜索

CPT對稱物理定律中一种对称性质,有此性质的物理量在时间(T,time)、电荷(C,Charge)及宇称(P,Parity)一起被反向变换(即正负变号)后不变。

歷史[编辑]

1950年代的研究指出,P對稱(宇稱)在弱相互作用下會被破壞,而C對稱(電荷共軛)破壞也有幾個有名的例證。於是有一小段時期,物理學家認為CP對稱在所有物理現象中都會守恆,但不久後就發現這個也是錯的。由於CPT守恆的關係,這意味着T對稱(時間反轉)也必須被破壞。CPT定理需要所有物理現象都保有CPT對稱。它假設量子定律和洛侖茲不變性都是正確的。具體地,CPT定理指定,任何有自伴哈密頓算符洛侖茲不變局部量子場論,都必須要有CPT對稱。

CPT定理最早含蓄地出現於1951年,在朱利安·施溫格有關自旋統計定理的研究報告中。在1954年,格哈特·呂德爾斯沃爾夫岡·泡利推導出更明確的證明,因此這定理有時候會被稱為呂德爾斯-泡利定理。約翰·斯圖爾特·貝爾也在差不多同一時間獨立地證明了這一定理。這些證明都是基於量子場相互作用中的洛侖茲不變性局部性原理。隨後,雷斯·約斯特公設量子場論的框架下提出了一個更通用的證明。

推導[编辑]

考慮一z方向的一維洛侖茲變換。它可被詮釋成時間軸旋轉進z軸,其中旋轉參數為虛數。若旋轉參數為實數時,180°的旋轉變得可行,從而可以反轉時間和z的方向。把其中一條軸的方向逆轉,在任何數量的維裏都會是一種反射。若空間是三維的話,因為可以在x-y平面上再加一個180°的旋轉,所以這跟把所有座標都反射是一樣的。

如果我們採用反粒子的費曼-斯蒂克爾伯格表述,即反粒子往時間的反方向移動,那麼上述的反射就是CPT變換的定義。這個詮種需要少量的解析延拓,它只能在以下的條件下有良適定義:

  1. 理論本身是洛侖兹不變的;
  2. 真空是洛侖兹不變的;
  3. 能量從下方受到束縛。

當上述條件成立時,量子場論可被延伸至歐幾里得空間,使用哈密頓算符把所有算符平移至虛數平面(威克轉動),即可得歐幾里得理論。此時哈密頓算符的對易關係,與洛侖茲生成元,會保證洛侖茲不變性導致旋轉不變性,因此在歐幾里得空間任何態都能被旋轉180°。

由於連續兩次CPT反射相當於360°旋轉,所以費米子在兩次CPT反射後會變號,而玻色子則不會。這個特性可用於證明自旋統計定理

後果[编辑]

CPT對稱的破壞會直接導致洛侖茲破壞

引申CPT對稱可得我們宇宙的一個“鏡像”——所有物體的位置都被一虛擬平面所反射(對應宇稱反向),所有動量反向(時間反轉)及所有物質都被反物質所取代(對應電荷反轉)——在跟我們一樣的物理定律下會如何演進。CPT變換把我們的宇宙變成它的“鏡像”,反之亦然。CPT對稱被認為是所有物理定律的基礎性質。

為了保住這一項對稱,CPT中任何兩個對稱所組成的對稱(例如CP)被破壞時,對應地餘下的一個對稱(例如T)也一定會被破壞;實際上,就數學而言,兩者是一樣的。因此T對稱破壞很多時候會被稱為CP破壞

在需要考慮Pin群的時候,CPT定理可被概括化。

參見[编辑]

參考資料[编辑]

  • Sozzi, M.S. Discrete symmetries and CP violation. Oxford University Press. 2008. ISBN 978-0-19-929666-8. 
  • Griffiths, David J. Introduction to Elementary Particles. Wiley, John & Sons, Inc. 1987. ISBN 0-471-60386-4. 
  • Streater, R.F. and Wightman, A.S. PCT, spin and statistics, and all that. Benjamin/Cummings. 1964. ISBN 0-691-07062-8. 

外部連結[编辑]