費馬原理(英語:Fermat's principle)最早由法国科学家皮埃爾·德·費馬在1662年提出:光传播的路径是光程取极值的路径。这个极值可能是极大值、极小值或函数的拐点。 [1]最初提出时,又名「最短時間原理」:光線傳播的路徑是需時最少的路徑[2]。
費馬原理更正確的稱謂應是「平穩時間原理」:光沿着所需时间为平稳的路径传播。平稳是数学上的微分概念,可以理解为一阶导数为零,它可以是极大值、极小值甚至是拐点。
費馬原理是几何光学的基本定理。用微分或变分法可以从費馬原理导出以下三个几何光学定律:
- 光线在真空中的直线传播。
- 光的反射定律 - 光线在界面上的反射, 入射角必须等于出射角。
- 光的折射定律(斯涅尔定律)。
最短光时线可以有多条,例如光线从椭圆面焦点A经过反射到另一焦点B,可以有无数条路径,所有这些路径的光線傳播时間都相等。
光線從點Q傳播至點O時,會被半圓形或混合形鏡子
反射,最終抵達點P。
費馬原理更正確的版本應是「平穩時間原理」。對於某些狀況,光線傳播的路徑所需的時間可能不是最小值,而是最大值,或甚至是拐值。[1]
- 平面鏡:任意兩點的反射路徑光程是最小值。
- 半橢圓形鏡子:其兩個焦點的光線反射路徑不是唯一的,光程都一樣,是最大值,也是最小值。
- 半圓形鏡子:其兩個端點Q、P的反射路徑光程是最大值。
- 如最右圖所示,對於由四分之一圓形鏡與平面鏡組合而成的鏡子,同樣這兩個點Q、P的反射路徑的光程是拐值。
光从P点出发射向x点,反射到Q点。
P 点到 x点的距离
Q 点 到 x 点的距离
從點P到點Q的光程 D 為
- 。
根據費馬原理,光線在真空中傳播的路徑是光程為極值的路徑。
取光程 對 的導數,令其為零:
- 。
但其中
。
即
这就是反射定律
|
|
球面的半径=R
光线从直径一端Q射向球面,反射到直径另一端P
光程
因;
所以
根据费马原理, D'=0
解之, 得 ,代入D得到:
光程,乃是一个最大值=2.8R;(最小值光程是从直径一端到Q另一端P,光程=2R)
如右圖所示,設定介質1、介質2的折射率分別為 、 ,光線從介質1在點O傳播進入介質2,則司乃耳定律以方程式表達為
- ;
其中, 為入射角, 為折射角。
從費馬原理,可以推導出司乃耳定律。光線在介質1與介質2的速度 和 分別為
- 、
- ;
其中, 是真空光速。
由於介質會減緩光線的速度,折射率 和 都大於 。
從點Q到點P的傳播時間 為
- 。
根據費馬原理,光線傳播的路徑是所需時間為極值的路徑,取傳播時間 對 的導數,設定其為零:
- 。
其中
因此得到傳播速度與折射角的關係式:
- 。
將傳播速度與折射率的關係式代入,就會得到司乃耳定律:
- 。
伯努利家族的约翰·伯努利在解决最速降线问题时曾利用到费马原理。[3]他将小球运动类比作光线的运动,从而得出最速降线为摆线。
- ^ 1.0 1.1 Hecht, Eugene, Optics 4th, United States of America: Addison Wesley: pp. 106–111, 141, 2002, ISBN 0-8053-8566-5 (英语)
- ^ Dugas, R., A History Of Mechanics, New York: Dover Publications, Inc.: pp. 255ff, 274, 345–346, 1988, ISBN 0-486-65632-2
- ^ http://www.guokr.com/article/22018/ (页面存档备份,存于互联网档案馆) 复活节闲扯:一场激动人心的数学公开挑战赛,果壳网。