跳转到内容

树的遍历

本页使用了标题或全文手工转换
维基百科,自由的百科全书

计算机科学裡,树的遍历(也称为树的走访树的搜索)是一种圖的遍歷,指的是按照某种规则,不重复地访问某种的所有节点的过程。具体的访问操作可能是检查节点的值、更新节点的值等。不同的遍历方式,其访问节点的顺序是不一样的。以下虽然描述的是二叉树的遍历算法,但它们也适用于其他树形结构。

遍历的种类

[编辑]

与那些基本上都有标准遍历方式(通常是按线性顺序)的线性数据结构(如链表、一维数组)所不同的是,树结构有多种不同的遍历方式。从二叉树的根节点出发,节点的遍历分为三个主要步骤:对当前节点进行操作(称为“访问”节点)、遍历左边子节点、遍历右边子节点。这三个步骤的先后顺序也是不同遍历方式的根本区别。

由于从给定的某个节点出发,有多个可以前往的下一个节点(树不是线性数据结构),所以在顺序计算(即非并行计算)的情况下,只能推迟对某些节点的访问——即以某种方式保存起来以便稍后再访问。常见的做法是采用堆栈(LIFO)或队列(FIFO)。由于树本身是一种自我引用(即递归定义)的数据结构,因此很自然也可以用递归方式,或者更准确地说,用共递归,来实现延迟节点的保存。这时(采用递归的情况)这些节点被保存在呼叫堆疊中。

遍历方式的命名,源于其访问节点的顺序。最简单的划分:是深度优先(先访问子节点,再访问父节点,最后是第二个子节点)?还是广度优先(先访问第一个子节点,再访问第二个子节点,最后访问父节点)? 深度优先可进一步按照根节点相对于左右子节点的访问先后来划分。如果把左节点和右节点的位置固定不动,那么根节点放在左节点的左边,称为前序(pre-order)、根节点放在左节点和右节点的中间,称为中序(in-order)、根节点放在右节点的右边,称为后序(post-order)。对广度优先而言,遍历没有前序中序后序之分:给定一组已排序的子节点,其“广度优先”的遍历只有一种唯一的结果。

深度优先遍历

[编辑]

分作前序走訪中序走訪后序走訪,前、中、後代表根節點在走訪時的位置。以下透過C語言實作,並均使用递归方法。

前序遍历

[编辑]
深度优先遍历(前序遍历)
F, B, A, D, C, E, G, I, H.

前序遍历(Pre-Order Traversal)是依序以根節點、左節點、右節點為順序走訪的方式。 其遍歷順序是:

1
2

3

4

5

void pre_order_traversal(TreeNode *root) {
    // Do Something with root
    if (root->lchild != NULL) //若其中一側的子樹非空則會讀取其子樹
        pre_order_traversal(root->lchild);
    if (root->rchild != NULL) //另一側的子樹也做相同事
        pre_order_traversal(root->rchild);
}

中序遍历

[编辑]
深度优先遍历(中序遍历)
A, B, C, D, E, F, G, H, I.

中序遍历(In-Order Traversal)是依序以左節點、根節點、右節點為順序走訪的方式。 其遍歷順序是:

4
2

1

3

5

void in_order_traversal(TreeNode *root) {
    if (root->lchild != NULL) //若其中一側的子樹非空則會讀取其子樹
        in_order_traversal(root->lchild);
    // Do Something with root
    if (root->rchild != NULL) //另一側的子樹也做相同事
        in_order_traversal(root->rchild);
}

后序遍历

[编辑]
深度优先搜索(后序遍历):
A, C, E, D, B, H, I, G, F.

后序遍历(Post-Order Traversal)是依序以左節點、右節點、根節點為順序走訪的方式。 其遍歷順序是:

5
3

1

2

4

void post_order_traversal(TreeNode *root) {
    if (root->lchild != NULL) //若其中一側的子樹非空則會讀取其子樹
        post_order_traversal(root->lchild);
    if (root->rchild != NULL) //另一側的子樹也做相同事
        post_order_traversal(root->rchild);
    // Do Something with root
}

广度优先遍历

[编辑]

和深度优先遍历不同,广度优先遍历会先访问离根节点最近的节点。二叉树的广度优先遍历又称按层次遍历。算法借助队列实现。 其遍歷順序是:

1
2

4

5

3

广度优先遍历 - 层次遍历:
F, B, G, A, D, I, C, E, H.
void level(TreeNode *node)
{
  Queue *queue = initQueue();
  enQueue(queue, node);

  while (!isQueueEmpty(queue))
  {
    TreeNode *curr = deQueue(queue);

    // Do Something with curr

    if (curr->lchild != NULL)
      enQueue(queue, curr->lchild);
    if (curr->rchild != NULL)
      enQueue(queue, curr->rchild);
  }
}

多叉树的遍历

[编辑]

深度优先遍历

[编辑]

先訪問根結點,後選擇一子結點訪問並訪問該節點的子結點,持續深入後再依序訪問其他子樹,可以輕易用遞迴的方式實現。

void travel(treenode* nd){
    for(treenode* nex : nd->childs){ //childs存放指向其每個子結點的指標
        travel(nex);   
    }
    return;
}

参见

[编辑]

参考資料

[编辑]