跳至內容

極大與極小元

維基百科,自由的百科全書
(重新導向自极小元
60的因數,以整除關係為偏序,所成的哈斯圖。紅色子集有兩個極大元和一個極小元同時也是最小元

數學分支序理論中,預序集子集極大元(英語:maximal elements)不小於的任何元素。極小元minimal elements)可對偶地英語Duality (order theory)定義,其不大於的任何元素。

極大和極小的條件比最大和最小弱。預序集的子集的最大元需要「大於或等於」的全體元素(最小元同樣為其對偶),極大元則衹需「不小於」(例如不可比較英語Comparability)。若將預序集限縮至偏序集,則至多衹有一個最大元和一個最小元,但極大、極小元皆可有多於一個。[1][2]但在全序集上,最大等價於極大,最小亦等價於極小。

以集族

為例,其上的偏序為包含關係。當中極小,因為不包含族中任何其他集合,反之極大,因為不被其他集合包含。則既非極小亦非極大,但同時為極小、極大。相比之下,最大元最小元

定義

[編輯]

預序集,又設,則中關於的極大元定義為滿足以下性質的元素

若有使 則必有

與之類似,中關於極小元是滿足以下性質的元素

若有使 則必有

等價地,亦可將關於的極小元定義為關於的極大元,其中對任意當且僅當

若無明示子集,則所謂極大元預設是的極大元。

若預序集實為偏序集[註 1],或者限縮到是偏序集,則為極大當且僅當無嚴格較大的元素。換言之,不存在使 將本段的號一律換成就得到極小元的描述。

存在性

[編輯]

極大/極小元不必存在。

  • 例一:考慮實數的區間。對任意元素仍在中,但,因此沒有元素為極大。
  • 例二:考慮有理數的子集,因為根號2是無理數,對任何有理數皆可找到另一有理數使

但在某些情況下,極大/極小元保證存在。

  • 為有限非空子集,則必有極大元和極小元。(對無窮子集無此結論,如整數就沒有極大元。)
  • 佐恩引理斷言:「若偏序集中,每個全序子集皆有上界,則至少有一個極大元。」此引理等價於良序定理選擇公理[3]在數學的多個分支有重要推論,例如可證任何向量空間皆有(極大的代數無關子集),或是任何皆有代數閉包代數擴張偏序下的極大元)。

唯一性

[編輯]

極大/極小元不必唯一。

各領域例子

[編輯]

[編輯]
  1. ^ 因此連同可推出
  2. ^ 2.0 2.1 定義為:當且僅當。高維情形亦同。
  3. ^ 若有元素,則集族無極小元。

參考文獻

[編輯]
  1. ^ Richmond, Bettina; Richmond, Thomas, A Discrete Transition to Advanced Mathematics, American Mathematical Society: 181, 2009, ISBN 978-0-8218-4789-3 .
  2. ^ Scott, William Raymond, Group Theory 2nd, Dover: 22, 1987, ISBN 978-0-486-65377-8 
  3. ^ Jech, Thomas. The Axiom of Choice. Dover Publications英語Dover Publications. 2008 [originally published in 1973]. ISBN 978-0-486-46624-8.