跳转到内容

渐伸线

维基百科,自由的百科全书

渐伸线(involute)(或称渐开线(evolvent))和渐屈线(evolute)是曲线的微分几何上互为表里的概念。若曲线A是曲线B的渐伸线,曲线B是曲线A的渐屈线。

在曲线上选一定点S。有一动点PS出发沿曲线移动,选在P的切线上的Q,使得曲线长SP 和直线段长PQ 相同。渐伸线就是Q的轨迹。

若曲线B有参数方程,其中,曲线A的方程为

曲线的渐屈线是该曲线每点的曲率中心的集。

若该曲线有参数方程),则其渐屈线为

每条曲线可有无穷多条渐伸线,但只有一条渐屈线。

渐屈线 渐伸线
悬链线 曳物线
圆内螺线外摆线 相似的圆内螺线/外摆线
摆线 相同的摆线
半立方抛物线 抛物线

参数化曲线

[编辑]

渐开线方程曲线的参数化定义的函数( x(t) , y(t) ) 是:



范例

[编辑]
圆的渐伸线
(反向, by unwinding)
悬链线的渐开线是一个 曳物线

圆的渐伸线

[编辑]

圆的渐伸线会形成一个类似阿基米德螺线的图形。

其中是圆的半径,为参数

  • 极坐标系中, 一个圆的渐开线的参数方程可以写成:

其中 是圆的半径 为参数

通常,一个圆的渐开线常被写成写成:

.

欧拉建议使用圆的渐开线作为齿轮的形状, 这个设计普遍存在于目前使用,称为渐开线齿轮

悬链线的渐开线

[编辑]

一个悬链线的渐开线 会通过此悬链线的顶点 ,形成曳物线。 在笛卡儿坐标系中,一个悬链线的渐开线的参数方程可以写成:



其中t 是参数,而sech是双曲正割函数(1/cosh(x))

衍生

我们得到

替代成

可得到

摆线的渐开线

[编辑]

一个 摆线的渐开线是另一个与它 全等的摆线 在笛卡儿坐标系中,一个摆线的渐开线的参数方程可以写成:

其中t是角度,r半径

参见

[编辑]

外部链接

[编辑]