跳转到内容

单边带调制:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
→‎1 历史:​ // Edit via Wikiplus
从英文翻译
第13行: 第13行:
[[HAM|业余无线电爱好者]]在[[第二次世界大战|二战]]之后开始试验单边带调制。从那时起,它就成为了事实上的长距离语音无线电通讯的标准。
[[HAM|业余无线电爱好者]]在[[第二次世界大战|二战]]之后开始试验单边带调制。从那时起,它就成为了事实上的长距离语音无线电通讯的标准。


==数学表==
==数学表==
设<math>s(t)</math>为[[基带]]波形信号,它的[[傅里叶变换]]为<math>S(f)</math>,且是在<math>f=0</math>处希尔伯特对称的。这是因为<math>s(t)</math>是[[实数|实际值]]。


在其中一个[[基带]]波形来自其他基带波形,而非独立信息的特殊情况下,单边带具有[[正交幅度调制]](QAM)的数学形式:
对<math>s(t)</math>在频率<math>F_c</math>处进行[[双边带]]调制,将把对称轴移动到<math>f=\pm F_c</math>处,每个轴两侧的信号都被称为[[边带]]信号。


{{NumBlk|:|<math>s_\text{ssb}(t) = s(t)\cdot \cos(2\pi f_0 t) - \widehat s(t)\cdot \sin(2\pi f_0 t),\,</math>|{{EquationRef|Eq.1}}}}
设<math>\widehat s(t)</math>为<math>s(t)</math>的[[希尔伯特变换]]后的信号

其中 <math>s(t)\,</math> 是信号,<math>\widehat s(t)\,</math> 是它的[[希爾伯特轉換]],而 <math>f_0\,</math> 是无线电载波频率。<ref>{{cite book|last1=Tretter|first1=Steven A.|editor1-last=Lucky|editor1-first=R.W.|title=Communication System Design Using DSP Algorithms|date=1995|publisher=Springer|location=New York|isbn=0306450321|page=80|chapter=Chapter 7, Eq 7.9}}</ref>

要理解这个公式,我们可以将 s(t) 表示成两个复值函数的和:

:<math>s(t) = \tfrac{1}{2}\underbrace{(s(t) + j \cdot \widehat s(t))}_{s_a(t)} + \tfrac{1}{2}\underbrace{(s(t) - j\cdot \widehat s(t))}_{s_a^*(t)},</math>

其中 <math>j</math> 表示[[虛數單位]],<math>s_a(t)</math> 是 <math>s(t)</math> 的{{le|解析表示|analytic representation}},而 <math>s_a^*(t)</math> 是它的[[复共轭]]。这个表示将 <math>s(t)</math> 的非负频率分量和非正频率分量分开。换句话说:

:<math>
\tfrac{1}{2}S_\mathrm{a}(f) =
\begin{cases}
S(f), &\text{for}\ f > 0,\\
0, &\text{for}\ f < 0,
\end{cases}
</math>

其中 <math>S_\mathrm{a}(f)</math> 与 <math>S(f)</math> 分别是 <math>s_a(t)</math> 和 <math>s(t)</math> 的傅里叶变换。频率平移函数 <math>S_\mathrm{a}(f - f_0)</math> 只包含 <math>S(f)</math> 的一边。因为只含有正频率成分,所以它的傅里叶逆变换为<math>s_\text{ssb}(t)</math> 的解析表示:

:<math>\mathcal{F}^{-1} \{S_\mathrm{a}(f - f_0)\} = s_a(t) \cdot e^{j2\pi f_0 t} = s_\text{ssb}(t) + j \cdot \widehat s_\text{ssb}(t).\,</math>

因此,用[[欧拉公式]]把 <math>e^{j2\pi f_0 t}</math> 展开,我们就会得到{{EquationNote|Eq.1}}:

:<math>\begin{align}
s_{ssb}(t) &= Re\big\{s_a(t)\cdot e^{j2\pi f_0 t}\big\}\\
&= Re\left\{\ [s(t) + j \cdot \widehat s(t)] \cdot [\cos(2\pi f_0 t) + j \cdot \sin(2\pi f_0 t)]\ \right\}\\
&= s(t) \cdot \cos(2\pi f_0 t) - \widehat s(t) \cdot \sin(2\pi f_0 t).
\end{align}</math>

用相干解调将 <math>s_\text{ssb}(t)</math> 恢复成 <math>s(t)</math> 的过程是与幅度调制相同的:乘以 <math>\cos(2\pi f_0 t),</math> 并用低通滤波器除去 <math>2 f_0</math> 频率附近的“倍频”成分。如果解调载波不能得到正确的相位(这里是余弦相位),解调信号就会是 <math>s(t)</math> 与 <math>\widehat s(t)</math> 的某种线性组合,这在语音通信中通常是可以接受的(如果解调载波频率不是十分正确,相位会周期性地漂移,在频率误差很小的情况下,又会处在语音通信可接受的范围内;业余无线电爱好者有时甚至会容忍更大的频率误差,就会引起不自然的声音音调变化现象)。


:<math>s_a(t) = s(t)+j\cdot \widehat s(t)</math>
===下边带===
===下边带===
<math>s(t)</math> 也可以作为复共轭 <math>s_a^*(t) </math> 的实部来恢复,该复共轭表示 <math>S(f)</math> 的负频率部分。当 <math>f_0\,</math> 足够大时,<math>S(f - f_0)</math> 没有负频率,乘积 <math>s_a^*(t) \cdot e^{j2\pi f_0 t}</math> 是另一个解析信号,它的实部是真正的''低边带''传输:

:<math>\begin{align}
s_a^*(t)\cdot e^{j2\pi f_0 t} &= s_\text{lsb}(t) + j\cdot \widehat s_\text{lsb}(t) \\
s_{lsb}(t) &= Re\big\{s_a^*(t)\cdot e^{j2\pi f_0 t}\big\} \\
&= s(t) \cdot \cos(2\pi f_0 t) + \widehat s(t)\cdot \sin(2\pi f_0 t).
\end{align}</math>

需要注意的是,两个边带信号的总和:

:<math>2s(t) \cdot \cos(2\pi f_0 t),\,</math>

抑制载波双边带调幅的经典模型。


==信号产生方法==
==信号产生方法==

2015年11月25日 (三) 05:42的版本

调幅和单边带信号频谱示意图。相比于基带,下边带(LSB)频谱是反相的。举例来说,一个2 kHz的音频基带信号调制到一个5 MHz的载波上,如果是上边带(USB)的话会产生5.002 MHz的频率,下边带就会是4.998 MHz。
調變方式
連續調變
调幅调频调角
模拟AM
SSB · DSB
FMPM
数字ASK
OOK · QAM
FSK
MSK · GFSK
PSK
CPM
其他SM英语Space modulation (類比)
脈衝調變
模拟PAM · PDM · PPM
数字PCM · PWM
扩频
CSS英语Chirp spread spectrum · DSSS · THSS英语Time-hopping · FHSS
另見
調變 · 线路码 · 调制解调器 · ΔΣ調變 · OFDM · FDM

无线电通信中,单边带调制SSB)或单边带抑制载波SSB-SC),是一种可以更加有效的利用电能带宽调幅技术。调幅技术输出的调制信号带宽为源信号的两倍。单边带调制技术可以避免带宽翻倍,同时避免将能量浪费在载波上,不过因为设备变得复杂,成本也会增加。

历史

单边带调制的专利[1]约翰·伦肖·卡森英语John Renshaw Carson于1915年12月1日在美国获得。美国海军在一战以前就曾在它的无线电电路试验过单边带调制。[2][3] 从1927年1月7日从纽约到伦敦的长波跨大西洋公共无线电话电路开始,单边带调制第一次进入商业服务。大功率单边带发射机位于纽约罗基波因特英语Rocky Point, New York英国拉格比英语Rugby transmitting station。接收机位于缅因州霍尔顿和苏格兰庫珀的僻静之处。[4]

单边带调制一般使用在长途电话线路上,是FDM(分频多工)技术的一部分。FDM首先在20世纪30年代被电话公司使用,这一技术使得多路语音信号可以通过一条物理电路进行传输。单边带调制技术通过将信道分为4000Hz的等份,每一份传输频宽为300–3,400Hz的语音信号。

业余无线电爱好者二战之后开始试验单边带调制。从那时起,它就成为了事实上的长距离语音无线电通讯的标准。

数学表述

在其中一个基带波形来自其他基带波形,而非独立信息的特殊情况下,单边带具有正交幅度调制(QAM)的数学形式:

(Eq.1)

其中 是信号, 是它的希爾伯特轉換,而 是无线电载波频率。[5]

要理解这个公式,我们可以将 s(t) 表示成两个复值函数的和:

其中 表示虛數單位解析表示,而 是它的复共轭。这个表示将 的非负频率分量和非正频率分量分开。换句话说:

其中 分别是 的傅里叶变换。频率平移函数 只包含 的一边。因为只含有正频率成分,所以它的傅里叶逆变换为 的解析表示:

因此,用欧拉公式 展开,我们就会得到Eq.1

用相干解调将 恢复成 的过程是与幅度调制相同的:乘以 并用低通滤波器除去 频率附近的“倍频”成分。如果解调载波不能得到正确的相位(这里是余弦相位),解调信号就会是 的某种线性组合,这在语音通信中通常是可以接受的(如果解调载波频率不是十分正确,相位会周期性地漂移,在频率误差很小的情况下,又会处在语音通信可接受的范围内;业余无线电爱好者有时甚至会容忍更大的频率误差,就会引起不自然的声音音调变化现象)。

下边带

也可以作为复共轭 的实部来恢复,该复共轭表示 的负频率部分。当 足够大时, 没有负频率,乘积 是另一个解析信号,它的实部是真正的低边带传输:

需要注意的是,两个边带信号的总和:

抑制载波双边带调幅的经典模型。

信号产生方法

带通滤波

普通调幅信号频谱图。

一个调幅信号,由载波信号和两个频移后的调制信号构成。两个频移后的调制信号分别在载波信号的两侧,其中频率较低的那个信号是频率反转后的信号。俗称为边带

一种生成单边带调制信号的方法是将其中一个边带通过滤波去除,只留下上边带或者下边带。而且载波一般也需要经过衰减或者完全滤除(抑制)。这通常称为抑制单边带载波。假如原调制信号的两个边带是对称的,那么经过这一变换后,并不会造成任何的信息遗失。因为最终的射频放大器只发射一个边带,这样有效输出功率就会比普通的调幅方式大。单边带调制虽然具有使用带宽小、节省能量的优点,但是它无法被普通的调幅检波器解调。

哈特利调制

另外一种产生单边带调制信号的方法为哈特利调制。这种调制方法是根据R. V. L. Hartley命名的。该调制方法使用了相移方法来抑制不需要的边带。具体方法是,先将原始信号相移90°、载波信号也相移90°,再将原信号与原载波信号调制,相移后的信号与相移后的载波信号调制,这样就生成了两个调制后的信号。这两个调制后的信号通过加减,就可以获得边带信号。这种调制方法的一个好处就是,它可以允许解析单边带信号的表达式。这样有利于更好的理解单边带信号的同步检测效果。

将信号相移90°无法依靠简单的延迟信号得到。在模拟电路中,通常使用相移网络来实现。在真空管收音机流行的年代,这种方法非常流行,但后来因为成本的问题,使用的越来越少了。不过,现在这种调制方法在业余无线电数字信号处理器领域很流行。利用希尔伯特变换,可以在数字电路中以低成本实现这种调制方法。

韦瓦调制

另一种实现方法是韦瓦调制,该方法仅使用低通滤波和正交混合就可以实现,是数字化的理想方法。

韦瓦调制的过程是,首先信号经过正交调制,然后再经过低通滤波,再经过正交调制。之后取和,则获得上边带信号,取差,则获得下边带信号。

载波抑制单边带调制

残留边带(VSB)

残留边带调制(VSB)是介于单边带调制与双边带调制之间的一种调制方式,它既克服了DSB信号占用频带宽的问题,又解决了单边带滤波器不易实现的难题。 在残留边带调制中,除了传送一个边带外,还保留了另外一个边带的一部分。对于具有低频及直流分量的调制信号,用滤波法实现单边带调制时所需要的过渡带无限陡的理想滤波器,在残留边带调制中已不再需要,这就避免了实现上的困难。

它的几何含义是,残留边带滤波器的传输函数 在载频 附近必须具有互补对称性,它可以看作是对截止频率为 的理想滤波器的进行“平滑”的结果,习惯上,称这种“平滑”为“滚降”。显然,由于“滚降”,滤波器截止频率特性的“陡度”变缓,实现难度降低,但滤波器的带宽变宽。 残留边带信号显然也不能简单地采用包络检波,而必须采用图3-16所示的相干解调。 由于VSB基本性能接近SSB,而VSB调制中的边带滤波器比SSB中的边带滤波器容易实现,所以VSB调制在广播电视、通信等系统中得到广泛应用。

参考资料

  1. ^ US 1449382  John Carson/AT&T: "Method and Means for Signaling with High Frequency Waves" filed on December 1, 1915; granted on March 27, 1923
  2. ^ The History of Single Sideband Modulation, Ing. Peter Weber
  3. ^ IEEE, Early History of Single-Sideband Transmission, Oswald, A.A.
  4. ^ History Of Undersea Cables, (1927)
  5. ^ Tretter, Steven A. Chapter 7, Eq 7.9. Lucky, R.W. (编). Communication System Design Using DSP Algorithms. New York: Springer. 1995: 80. ISBN 0306450321. 

一般参考

延伸阅读

  • Sgrignoli, G., W. Bretl, R. and Citta. (1995). "VSB modulation used for terrestrial and cable broadcasts." IEEE Transactions on Consumer Electronics. v. 41, issue 3, p. 367 - 382.
  • J. Brittain, (1992). "Scanning the past: Ralph V.L. Hartley", Proc. IEEE, vol.80,p. 463.
  • eSSB - Extended Single Sideband