雷诺数

维基百科,自由的百科全书
跳转至: 导航搜索

流体力学中,雷诺数(Reynolds number)是流体惯性\frac{\rho v^2}{L}黏性\frac{\mu v}{L^2}比值的量度,它是一个无量纲量

雷諾數較小時,黏滯力對流場的影響大於慣性力,流場中流速的擾動會因黏滯力而衰減,流體流動穩定,為層流;反之,若雷諾數較大時,慣性力對流場的影響大於黏滯力,流體流動較不穩定,流速的微小變化容易發展、增強,形成紊亂、不規則的紊流流場。

定义[编辑]

对于不同的流场,雷诺数可以有很多表达方式。这些表达方式一般都包括流体性质(密度黏度)再加上流体速度和一个特征长度或者特征尺寸。这个尺寸一般是根据习惯定义的。比如说半径和直径对于球型和圆形并没有本质不同,但是习惯上只用其中一个。对于管内流动和在流场中的球体,通常使用直径作为特征尺寸。对于表面流动,通常使用长度。

管内流场[编辑]

对于在管内的流动,雷诺数定义为:

 \mathrm{Re} = {{\rho {\bold \mathrm V} D} \over {\mu}} = {{{\bold \mathrm V} D} \over {\nu}} = {{{\bold \mathrm Q} D} \over {\nu}A}

式中:

假如雷諾數的體積流速固定,則雷諾數與密度(ρ)、速度的开方(\sqrt{u})成正比;與管徑(D)和黏度(u)成反比

假如雷諾數的質量流速(即是可以穩定流動)固定,則雷諾數與管徑(D)、黏度(u)成反比;與√速度(\sqrt{u})成正比;與密度(ρ)無關

平板流[编辑]

对于在两个宽板(板宽远大于两板之间距离)之间的流动,特征长度为两倍的两板之间距离。

流体中的物体[编辑]

对于流体中的物体的雷诺数,经常用Rep表示。用雷诺数可以研究物体周围的流动情况,是否有漩涡分离,还可以研究沉降速度。

流体中的球[编辑]

对于在流体中的球,特征长度就是这个球的直径,特征速度是这个球相对于远处流体的速度,密度和黏度都是流体的性质。在这种情况下,层流只存在于Re=0.1或者以下。 在小雷诺数情况下,力和运动速度的关系遵从斯托克斯定律

搅拌槽[编辑]

对于一个圆柱形的搅拌槽,中间有一个旋转的桨或者涡轮,特征长度是这个旋转物体的直径。速度是ND,N是转速(周/秒)。雷诺数表达为:

 \mathrm{Re} = {{\rho N D^2} \over {\mu}}.

当Re>10,000时,这个系统为完全湍流状态。[1]

过渡流雷诺数[编辑]

对于流过平板的边界层,实验可以确认,当流过一定长度后,层流变得不稳定形成湍流。对于不同的尺度和不同的流体,这种不稳定性都会发生。一般来说,当\mathrm{Re}_x \approx 5 \times 10^5, 这里x是从平板的前边缘开始的距离,流速是边界层以外的自由流场速度。

一般管道流雷诺数<2100为层流(又可稱作黏滯流動、線流)状态,大于4000为湍流(又可稱作紊流、擾流)状态,2100~4000为过渡流状态。

層流:流體沿著管軸以平行方向流動,因為流體很平穩,所以可看作層層相疊,各層間不互相干擾。流體在管內速度分佈為拋物體的形狀,面向切面的則是拋物線分佈。因為是個別有其方向和速率流動,所以流動摩擦損失較小。

湍流:此則是管內流體流動狀態為各分子互相激烈碰撞,非直線流動而是漩渦狀,流動摩擦損失較大。

管道中的摩擦阻力[编辑]

穆迪圖說明達西摩擦因子f和雷诺数和相對粗糙度的關係

在管道中完全成形(fully developed)流體的壓降可以用穆迪圖來說明,穆迪圖繪製出在不同相對粗糙度下,達西摩擦因子f和雷诺数{\mathrm{Re}}及相對粗糙度\epsilon / D的關係,圖中隨著雷诺数的增加,管流由層流變為过渡流及湍流,管流的特性和流體為层流、过渡流或湍流有明顯關係。

流动相似性[编辑]

两个流动如果相似的话,他们必须有相同的几何形状和相同的雷诺数和欧拉数。当在模型和真实的流动之间比较两个流体中相应的一点,如下关系式成立:

 \mathrm{Re}_m = \mathrm{Re} \;
 \mathrm{Eu}_m = \mathrm{Eu} \;   \quad\quad     \mbox{i.e.}   \quad  {p_m \over \varrho_m {v_m}^{2}} = {p\over \varrho v^{2}} \; ,

带m下标的表示模型里的量,其他的表示实际流动里的量。 这样工程师们就可以用缩小尺寸的水槽或者风洞来进行试验,与数值模拟的模型比对数据分析,节约试验成本和时间。实际应用中也许会需要其他的无量纲量与模型一致,比如说马赫数福祿數

雷诺数的一般值

湍流临界值~ 2.3×103-5.0×104(对于管内流)到106(边界层)

雷诺数的推导[编辑]

雷诺数可以从无量纲的非可压納維-斯托克斯方程推导得来:

\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}\right) = -\nabla p + \mu \nabla^2 \mathbf{v} + \mathbf{f}.

上式中每一项的单位都是加速度乘以密度。无量纲化上式,需要把方程变成一个独立于物理单位的方程。我们可以把上式乘以系数:

\frac{D}{\rho V^2}

这里的字母跟在雷诺数定义中使用的是一样的。我们设:

 \mathbf{v'} = \frac{\mathbf{v}}{V},\ p' = p\frac{1}{\rho V^2}, \ \mathbf{f'} = \mathbf{f}\frac{D}{\rho V^2}, \ \frac{\partial}{\partial t'} = \frac{D}{V} \frac{\partial}{\partial t}, \ \nabla' = D \nabla

无量纲的纳维-斯托克斯方程可以写为:

\frac{\partial \mathbf{v'}}{\partial t'} + \mathbf{v'} \cdot \nabla' \mathbf{v'} = -\nabla' p' + \frac{\mu}{\rho D V} \nabla'^2 \mathbf{v'} + \mathbf{f'}

这里:\frac{\mu}{\rho D V} = \frac{1}{\mathit{Re}}.

最后,为了阅读方便把撇去掉:

\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla p + \frac{1}{\mathit{Re}} \nabla^2 \mathbf{v} + \mathbf{f}.

这就是为什么在数学上所有的具有相同雷诺数的流场是相似的。

参见[编辑]


參考文獻[编辑]

  • 朱佳仁. 環境流體力學. 科技圖書公司. 2003年. ISBN 9576553636. 
  1. ^ R. K. Sinnott Coulson & Richardson's Chemical Engineering, Volume 6: Chemical Engineering Design, 4th ed (Butterworth-Heinemann) ISBN 0-7506-6538-6 page 473