本页使用了标题或全文手工转换
本页使用了标题或全文手工转换

数字信号处理

维基百科,自由的百科全书
跳转至: 导航搜索

数字信号处理(digital signal processing)是指用数学和数字计算来解决问题,简称DSP。大学里,数字信号处理常指用数字表示和解决问题的理论和技巧;而DSP也是数字信号处理器(digital signal processor)的简称,是一种可编程计算机芯片,常指用数字表示和解决问题的技术和芯片。

数字信号处理的目的是对真实世界的模拟信号进行加工和处理。因此在数字信号处理前,模拟信号要用模数转换器变成数字信号;经数字信号处理后的数字信号往往要用数模转换器变回模拟信号,才能适应真实世界的应用。

数字信号处理的算法需要用计算机或专用处理设备如数字信号处理器专用集成电路等来实现。处理器是用乘法、加法、延时来处理信号,是0和1的数字运算,比模拟信号处理的电路稳定、准确、抗干扰、灵活。

数字信号处理的領域[编辑]

数字信号处理系統

在数字信号处理领域,工程师们常在以下一种域中研究数字信号:时域(一维信号)、空间域(多维信号)、频域自相关域和小波域。他们基于某种假设来选择适合研究信号的域(或者尝试不同的可能性),以便找到最佳表达信号特征的域。从测量仪器得到的采样序列表现为时域和空间域信号,然后通过离散傅里叶变换产生频域信号,这就是所谓的频谱。自相关被定义为对信号本身在变化的时间和空间坐标上做互相关处理。

数字信号处理系统[编辑]

完整的数字信号处理系统

完整的数字信号处理系统由七部分组成:信号转换,低通滤波,模数转换,数字信号处理,数模转换,低通滤波,信号转换。数字信号处理的信号大部分是物理变化信号,如声音、光,它们经信号转换才能变成电信号;这种信号是模拟信号,计算机不能处理,要变成数字信号。模数转换速度有限,而且模拟信号可能包含快变成分,所以先要低通滤波,消除没用的快变部分,确保模数转换的正确。模拟信号变成数字信号后就可数字信号处理,如通信的编码、调制。对于不可编程的处理器,信号经过电路即可完成处理;对于可编程的处理器,信号经过计算机计算才能完成处理。处理后的数字信号往往要变回物理状态才能使用,如通信的无线电。数字信号经数模转换才能变成连续时间信号,这种信号有很多突变的地方,要低通滤波才会光滑。[1]

若只考虑电信号部分,数字信号处理系统可分为五部分:低通滤波,模数转换,数字信号处理,数模转换,低通滤波。[1]而不考虑低通滤波,则数字信号处理系统只有三部分:模数转换,数字信号处理,数模转换。

真实世界的信号一般是连续的模拟信号,相应的系统为模拟系统。为了在模拟系统中应用数字信号处理,必须在模拟系统和数字系统之间进行转换。通常将模拟系统的输入数字化,即信号采样,将此数字信号作为数字系统的输入。类似的,在数字信号处理的输出端,将输出的数字信号转换为模拟信号即为模拟系统的输出。

对模拟信号的采样必须满足采样定理以避免频谱混叠。也就是说,采样频率必须大于被采样信号带宽的两倍。为了保证被采样的模拟信号是带限的,通常在采样之前要对它进行适当的带通或低通滤波。信号采样包括两个步骤:即将变量和值都连续的模拟信号先后转换为在变量上离散的的离散信号和值上也离散的数字信号量化)。

时域和空域[编辑]

在时域和空域最常用的处理方法是使用称为滤波的方法增强输入信号强度。滤波大体上包括对于目前输入或者输出信号周围一些环境样本的变换。有不同方法表示滤波器的特点;例如:

  • “线性”滤波器是对于输入采样的线性变换;其它滤波器则是“非线性的”。线性滤波器满足重叠条件,例如,如果一个输入信号是不同权重信号的组合,输出就是同等权重的对应输出信号的线性组合。
  • “因果”滤波器仅仅使用前面输入或者输出信号的采样;一个“非因果”滤波器使用未来的输入采样。有些非因果滤波器可以在上面添加一个延时转换成因果滤波器;反之,因果滤波器可以通过引入延时单元获得非因果滤波器的某些特性。
  • “非时变”滤波器有不随时间变化的恒定属性;其它诸如自适应滤波器随着时间变化。
  • 一些滤波器是“稳定的”,另外一些则是“不稳定的”。一个稳定滤波器随着时间延长输出逐渐汇聚到一点或者在一个有限时间段内在一个范围内波动。一个不稳定滤波器产生发散的输出。
  • “无限脉冲响应”(IIR)滤波器含有反馈结构,因此它的输出不但与之前的输入信号有关,还与之前的输出信号有关。而“有限脉冲响应”(FIR)滤波器没有反馈结构,它的输出仅仅与之前的输入信号有关。同样因为有无反馈的关系,IIR滤波器可能是不稳定的,而FIR总是稳定的。

多数滤波器能够在Z域(频域的一个超集)用它们的传递函数描述。一个数字滤波器可以表示为一个差分方程零点极点集合。或者,如果是FIR滤波器的话,可以表示为脉冲响应或者阶梯响应。FIR滤波器对应一个输入的输出可以用输入信号和脉冲响应卷积来计算。滤波器也可以使用系统框图表示,它们然后就可以用于派生出一个处理算法示例使用硬件实现这个滤波器。

频域[编辑]

信号通常通过傅里叶变换从时域或者空间域转换到频域。傅里叶变换将信号信息转换成每个成份频率上的幅度和相位。傅里叶变换经常转换成功率谱,功率谱是每个成份频率幅度的平方。

在频域分析信号的最常见目的是分析信号属性。工程师通过分析频谱就可以知道输入信号中有那些频率的信号没有那些频率的信号。

有一些通用的频域变换方法,例如倒頻譜通过傅里叶变换将信号转换到频域、取对数、然后再进行傅里叶变换。这种方法加强了幅度较小的成份频率但是保留了成份频率幅度的顺序。

应用[编辑]

DSP的主要应用是音频信号处理音频压缩数字图像处理视频压缩语音处理语音识别数字通信等。明确的例子有数字移动电话中的语音压缩和传输、高保真音响设备中声音均衡、天气预报经济预测地震数据处理、工业过程的分析和控制、电影中的计算机动画、如X射線斷層成像MRI这样的医學影像图像处理以及用于电吉他功放数字音效。另外的应用还有PC声卡的超低频接收。[2]

相关理论方法[编辑]

相关领域[编辑]

参考文献[编辑]

引用[编辑]

  1. ^ 1.0 1.1 杨毅明. 数字信号处理(第2版). 机械工业出版社. 
  2. ^ [1]

来源[编辑]

外部連結[编辑]