本页使用了标题或全文手工转换

Z轉換

维基百科,自由的百科全书
跳转至: 导航搜索

數學信号处理中,Z轉換英语Z-transform)把一連串離散實數複數訊號,從時域轉為复頻域表示。

可以把它认为是拉普拉斯变换的离散时间等价。在时标微积分中会探索它们的相似性

历史[编辑]

现在所知的Z变换的基本思想,拉普拉斯就已了解,而1947年W. Hurewicz英语Witold Hurewicz用作求解常系数差分方程的一种容易处理的方式。[1] 后来由1952年哥伦比亚大学的采样控制组的雷加基尼查德称其为“Z变换”。[2][3]

E. I. Jury后来发展并推广了改进或高级Z变换英语Advanced Z-transform[4][5]

Z变换中包含的思想在数学里称作母函数方法,该方法可以追溯到1730年的时候,棣莫弗与概率论结合将其引入。[6] 从数学的角度,当把数字序列视为解析函数的(洛朗)展开时,Z变换也可以看成是洛朗级数

定義[编辑]

像很多积分变换一样,Z变换可以有单边和双边定义。

双边Z变换[编辑]

双边Z轉換把离散時域信号 x[n] 轉為形式幂级数 X(Z)

X(z) = \mathcal{Z}\{x[n]\} = \sum_{n=-\infty}^{\infty} x[n] z^{-n}

當中 n 是整數,z 是複數变量,其表示方式為

z = A e^{j\phi} = A(\cos{\phi}+j\sin{\phi})\,

其中 Az 的模,j虚数单位,而 ɸ 为幅角(也叫相位角),用弧度表示。

单边Z变换[编辑]

另外,只对 n ≥ 0 定义的 x[n]单边Z变换定义为

X(z) = \mathcal{Z}\{x[n]\} =  \sum_{n=0}^{\infty} x[n] z^{-n}.

信号处理中,这个定义可以用来计算离散时间因果系统单位冲激响应

单边Z变换的一个重要例子是概率母函数,其中 x[n] 部分是离散随机变量取 n 值时的概率,而函数 X(z) 通常写作 X(s),用 s = z−1 表示。Z变换的性质(在下面)在概率论背景下有很多有用的解释。

地球物理学定义[编辑]

地球物理中的Z变换,通常的定义是 z 的幂级数而非 z−1 的。例如,Robinson、Treitel[7]和Kanasewich都使用这个惯例。[8] 地球物理定义为:

X(z) = \mathcal{Z}\{x[n]\} =  \sum_{n} x[n] z^{n}.

这两个定义是等价的;但差分结果会有一些不同。例如,零点和极点的位置移动在单位圆内使用一个定义,在单位圆外用另一个定义。[7][8] 因此,需要注意特定作者使用的定义。

逆Z变换[编辑]

Z变换为

 x[n] = \mathcal{Z}^{-1} \{X(z) \}= \frac{1}{2 \pi j} \oint_{C} X(z) z^{n-1} dz

其中 C 是完全处于收敛域(ROC)内的包围原点的一个逆时针闭合路径。在 ROC 是因果的情况下(参见例2),这意味着路径 C 必须包围 X(z) 的所有极点。

这个围道积分的一个特殊情形出现在 C 是单位圆的时候(可以在ROC包含单位圆的时候使用,总能保证 X(z) 是稳定的,即所有极点都在单位圆内)。逆Z变换可以化简为逆离散傅里叶变换

 x[n] = \frac{1}{2 \pi} \int_{-\pi}^{+\pi}  X(e^{j \omega}) e^{j \omega n} d \omega.

有限范围 n 和有限数量的均匀间隔的 z 值的Z变换可以用Bluestein的FFT算法方便地计算。离散时间傅里叶变换 (DTFT)—不要与离散傅里叶变换(DFT)混淆—是通过将 z 限制在位于单位圆上而得到的一种Z变换的特殊情况。

收敛域[编辑]

收敛域(ROC)是指Z变换的求和收敛的复平面上的点集。

ROC = \left\{ z : \left|\sum_{n=-\infty}^{\infty}x[n]z^{-n}\right| < \infty \right\}

例1(无ROC)[编辑]

x[n] = (0.5)n。在区间 (−∞, ∞) 上展开 x[n] 成为

x[n] = \left \{\cdots, 0.5^{-3}, 0.5^{-2}, 0.5^{-1}, 1, 0.5, 0.5^2, 0.5^3, \cdots \right \} = \left \{\cdots, 2^3, 2^2, 2, 1, 0.5, 0.5^2, 0.5^3, \cdots \right\}.

观察上面的和

\sum_{n=-\infty}^{\infty}x[n]z^{-n} \to \infty.

因此,没有一个 z 值可以满足这个条件。

例2(因果ROC)[编辑]

ROC用蓝色表示,单位圆用灰色虚点圆表示(用眼睛看会呈红色),而 |z| = 0.5 这个圆用虚线圆表示

x[n] = 0.5^n u[n]\ (其中 u单位阶跃函数)。在区间 (−∞, ∞) 上展开 x[n] 得到

x[n] = \left \{\cdots, 0, 0, 0, 1, 0.5, 0.5^2, 0.5^3, \cdots \right \}.

观察这个和

\sum_{n=-\infty}^{\infty}x[n]z^{-n} = \sum_{n=0}^{\infty}0.5^nz^{-n} = \sum_{n=0}^{\infty}\left(\frac{0.5}{z}\right)^n = \frac{1}{1 - 0.5z^{-1}}.

最后一个等式来自无穷几何级数,而等式仅在 |0.5z−1| < 1 时成立,可以以 z 为变量写成 |z| > 0.5。因此,收敛域为 |z| > 0.5。在这种情况下,收敛域为复平面“挖掉”远点为中心的半径为 0.5 的圆盘。

例3(非因果ROC)[编辑]

ROC用蓝色表示,单位圆用灰色虚点圆表示(用眼睛看会呈红色),而 |z| = 0.5 这个圆用虚线圆表示

x[n] = -(0.5)^n u[-n-1]\ (其中 u单位阶跃函数)。在区间 (−∞, ∞) 上展开 x[n] 得到

x[n] = \left \{ \cdots, -(0.5)^{-3}, -(0.5)^{-2}, -(0.5)^{-1}, 0, 0, 0, 0, \cdots \right \}.

观察这个和

\sum_{n=-\infty}^{\infty}x[n]z^{-n} = -\sum_{n=-\infty}^{-1}0.5^nz^{-n} = -\sum_{m=1}^{\infty}\left(\frac{z}{0.5}\right)^{m} = 1-\frac{1}{1 - 0.5^{-1}z} =\frac{1}{1 - 0.5z^{-1}}

再次使用无穷几何级数,此等式只在 |0.5−1z| < 1 时成立,可以用 z 为变量写成 |z| < 0.5。因此,收敛域为 |z| < 0.5。在这种情况下,收敛域为中心在原点的半径为 0.5 的圆盘。

本例与上例的不同之处仅在收敛域上。这是意图展示只有变换结果是不够的。

实例结论[编辑]

实例2和3清楚地表明,当且仅当指定收敛域时,x[n] 的Z变换 X(z) 才是唯一的。画因果和非因果情形的零极点图英语pole–zero plot表明,在这两种情况下收敛域都不包含极点位于 0.5 的情形。这可以拓展到多个极点的情形:收敛域永远不会包含极点。

在例2中,因果系统产生一个包含 |z| = ∞ 的收敛域,而例3中的非因果系统产生包含 |z| = 0 的收敛域。

ROC表示为蓝色圆环 0.5 < |z| < 0.75

在有多个极点的系统中,收敛域可以既不包含 |z| = ∞ 也不包含 |z| = 0。画出的收敛域与一个圆形带。例如,

x[n] = 0.5^nu[n] - 0.75^nu[-n-1]

的极点为 0.5 与 0.75。收敛域会是 0.5 < |z| < 0.75,不包含原点和无穷大。这样的系统称为混合因果系统,因为它包含一个因果项 (0.5)nu[n] 和一个非因果项 −(0.75)nu[−n−1]。

一个系统的稳定性可以只通过了解收敛域来确定。如果收敛域包含单位圆(即 |z| = 1),那么系统是稳定的。在上述系统中因果系统(例2)是稳定的,因为 |z| > 0.5 包含单位圆。

如果给定一个没有收敛域的Z变换(即模糊的 x[n]),可以确定一个唯一的 x[n] 满足下列:

  • 稳定性
  • 因果性

如果你要稳定性,收敛域必须包含单位圆;如果你需要一个因果系统,收敛域必须包含无穷大,并且系统函数应为一个右边序列。如果你需要一个非因果系统,那么收敛域必须包含原点,且系统函数为左边序列。如果你既要稳定性,也要因果性,系统函数的所有极点都必须在单位圆内。

可以找到唯一的 x[n]

性质[编辑]

Z变换性质
时域 Z域 证明 收敛域
记法 x[n]=\mathcal{Z}^{-1}\{X(z)\} X(z)=\mathcal{Z}\{x[n]\} r_2<|z|<r_1
線性 a_1 x_1[n] + a_2 x_2[n] a_1 X_1(z) + a_2 X_2(z) \begin{align}X(z) &= \sum_{n=-\infty}^{\infty} (a_1x_1(n)+a_2x_2(n))z^{-n} \\
         &= a_1\sum_{n=-\infty}^{\infty} x_1(n)z^{-n} + a_2\sum_{n=-\infty}^{\infty}x_2(n)z^{-n} \\
         &= a_1X_1(z) + a_2X_2(z) \end{align} 包含 ROC1 ∩ ROC2
时间膨胀 x_K[n] = \begin{cases} x[r], & n = rK \\ 0, & n \not= rK \end{cases}

r: 整数

X(z^K) \begin{align} X_K(z) &=\sum_{n=-\infty}^{\infty} x_K(n)z^{-n} \\
&= \sum_{r=-\infty}^{\infty}x(r)z^{-rK}\\
&= \sum_{r=-\infty}^{\infty}x(r)(z^{K})^{-r}\\
&= X(z^{K}) \end{align} R^{\frac{1}{K}}
降采样 x[nK] \frac{1}{K} \sum_{p=0}^{K-1} X\left(z^{\tfrac{1}{K}} \cdot e^{-i \tfrac{2\pi}{K} p}\right) ohio-state.edu  或  ee.ic.ac.uk
时移 x[n-k] z^{-k}X(z) \begin{align} Z\{x[n-k]\} &= \sum_{n=0}^{\infty} x[n-k]z^{-n}\\
&= \sum_{j=-k}^{\infty} x[j]z^{-(j+k)}&& j = n-k \\
&= \sum_{j=-k}^{\infty} x[j]z^{-j}z^{-k} \\
&= z^{-k}\sum_{j=-k}^{\infty}x[j]z^{-j}\\
&= z^{-k}\sum_{j=0}^{\infty}x[j]z^{-j} && x[\beta] = 0,  \beta < 0\\
&= z^{-k}X(z)\end{align} ROC,除了 k > 0 时 z = 0 和 k < 0 时 z = ∞
Z域的

尺度性质

a^n x[n] X(a^{-1}z) \begin{align}\mathcal{Z} \left \{a^n x[n] \right \} &=  \sum_{n=-\infty}^{\infty} a^{n}x(n)z^{-n} \\
&= \sum_{n=-\infty}^{\infty} x(n)(a^{-1}z)^{-n} \\
&= X(a^{-1}z)
\end{align} |a|r_2 < |z|< |a|r_1
时间反转 x[-n] X(z^{-1}) \begin{align} \mathcal{Z}\{x(-n)\} &= \sum_{n=-\infty}^{\infty} x(-n)z^{-n} \\
&= \sum_{m=-\infty}^{\infty} x(m)z^{m}\\
&= \sum_{m=-\infty}^{\infty} x(m){(z^{-1})}^{-m}\\
&= X(z^{-1}) \\
\end{align} \tfrac{1}{r_1}<|z|<\tfrac{1}{r_2}
共轭复数 x^*[n] X^*(z^*) \begin{align} \mathcal{Z} \{x^*(n)\} &= \sum_{n=-\infty}^{\infty} x^*(n)z^{-n}\\
&= \sum_{n=-\infty}^{\infty} \left [x(n)(z^*)^{-n} \right ]^*\\
&= \left [ \sum_{n=-\infty}^{\infty} x(n)(z^*)^{-n}\right ]^*\\
&= X^*(z^*)
\end{align}
实部 \operatorname{Re}\{x[n]\} \tfrac{1}{2}\left[X(z)+X^*(z^*) \right]
虚部 \operatorname{Im}\{x[n]\} \tfrac{1}{2j}\left[X(z)-X^*(z^*) \right]
微分 nx[n]  -z \frac{dX(z)}{dz} \begin{align} \mathcal{Z}\{nx(n)\} &= \sum_{n=-\infty}^{\infty} nx(n)z^{-n}\\
&= z \sum_{n=-\infty}^{\infty} nx(n)z^{-n-1}\\
&= -z \sum_{n=-\infty}^{\infty} x(n)(-nz^{-n-1})\\
&= -z \sum_{n=-\infty}^{\infty} x(n)\frac{d}{dz}(z^{-n}) \\
&= -z \frac{dX(z)}{dz}
\end{align}
卷积 x_1[n] * x_2[n] X_1(z)X_2(z) \begin{align} \mathcal{Z}\{x_1(n)*x_2(n)\} &= \mathcal{Z} \left \{\sum_{l=-\infty}^{\infty} x_1(l)x_2(n-l) \right \} \\
                                   &= \sum_{n=-\infty}^{\infty} \left [\sum_{l=-\infty}^{\infty} x_1(l)x_2(n-l) \right ]z^{-n}\\
                                   &=\sum_{l=-\infty}^{\infty} x_1(l) \left [\sum_{n=-\infty}^{\infty} x_2(n-l)z^{-n} \right ]\\
                                   &= \left [\sum_{l=-\infty}^{\infty} x_1(l)z^{-l} \right ] \! \!\left [\sum_{n=-\infty}^{\infty} x_2(n)z^{-n} \right ] \\
                                   &=X_1(z)X_2(z)
\end{align} 包含 ROC1 ∩ ROC2
互相关 r_{x_1,x_2}=x_1^*[-n] * x_2[n] R_{x_1,x_2}(z)=X_1^*(\tfrac{1}{z^*})X_2(z) 包含 X_1(\tfrac{1}{z^*})X_2(z) 的ROC的交集
一阶差分 x[n] - x[n-1]  (1-z^{-1})X(z) 包含 X1(z)z ≠ 0 的ROC的交集
累积 \sum_{k=-\infty}^{n} x[k]  \frac{1}{1-z^{-1} }X(z) \begin{align}
\sum_{n=-\infty}^{\infty}\sum_{k=-\infty}^{n} x[k] z^{-n}&=\sum_{n=-\infty}^{\infty}(x[n]+\cdots + x[-\infty])z^{-n}\\
        &=X[z] \left (1+z^{-1}+z^{-2}+\cdots \right )\\
        &=X[z] \sum_{j=0}^{\infty}z^{-j} \\
        &=X[z] \frac{1}{1-z^{-1}}\end{align}
乘法 x_1[n]x_2[n] \frac{1}{j2\pi}\oint_C X_1(v)X_2(\tfrac{z}{v})v^{-1}\mathrm{d}v -

帕塞瓦尔定理

\sum_{n=-\infty}^{\infty} x_1[n]x^*_2[n] \quad = \quad \frac{1}{j2\pi}\oint_C X_1(v)X^*_2(\tfrac{1}{v^*})v^{-1}\mathrm{d}v

初值定理:如果 x[n] 为因果的,那么

x[0]=\lim_{z\to \infty}X(z).

终值定理:如果 (z−1)X(z) 的极点在单位圆内,则

x[\infty]=\lim_{z\to 1}(z-1)X(z).

常见的Z变换对表[编辑]

这里:

u : n \mapsto u[n] = \begin{cases} 1, & n \ge 0 \\ 0, & n < 0 \end{cases}

单位阶跃函数

\delta : n \mapsto \delta[n] = \begin{cases} 1, & n = 0 \\ 0, & n \ne 0 \end{cases}

离散时间单位冲激函数。两者通常都不认为是真正的函数,但由于它们的不连续性把它们看成是分布(它们在 n = 0 处的值通常无关紧要,除非在处理离散时间的时候,它们会变成衰减离散级数;在本章节中对连续和离散时间域,都在 n = 0 处取 1,否则不能使用下表中收敛域一栏的内容)。同时列出两个“函数”,使得(在连续时间域)单位阶跃函数是单位冲激函数的积分,或(在离散时间域)单位阶跃函数是单位冲激函数的求和,因此要令他们的值在 n = 0 处为 1。

信号,x[n] Z变换,X(z) ROC
1 \delta[n] 1 所有 z
2 \delta[n-n_0]  z^{-n_0}  z \neq 0
3 u[n] \,  \frac{1}{1-z^{-1} } |z| > 1
4 e^{-\alpha n} u[n]    1 \over 1-e^{-\alpha  }z^{-1}   |z| >  e^{-\alpha} \,
5   -u[-n-1]  \frac{1}{1 - z^{-1}} |z| < 1
6  n u[n]  \frac{z^{-1}}{( 1-z^{-1} )^2} |z| > 1
7  - n u[-n-1] \,  \frac{z^{-1} }{ (1 - z^{-1})^2 }  |z| < 1
8 n^2 u[n]   \frac{ z^{-1} (1 + z^{-1} )}{(1 - z^{-1})^3} |z| > 1\,
9  - n^2 u[-n - 1] \,   \frac{ z^{-1} (1 + z^{-1} )}{(1 - z^{-1})^3} |z| < 1\,
10 n^3 u[n]  \frac{z^{-1} (1 + 4 z^{-1} + z^{-2} )}{(1-z^{-1})^4} |z| > 1\,
11 - n^3 u[-n -1]  \frac{z^{-1} (1 + 4 z^{-1} + z^{-2} )}{(1-z^{-1})^4} |z| < 1\,
12 a^n u[n]  \frac{1}{1-a z^{-1}}  |z| > |a|
13 -a^n u[-n-1]  \frac{1}{1-a z^{-1}} |z| < |a|
14 n a^n u[n]  \frac{az^{-1} }{ (1-a z^{-1})^2 } |z| > |a|
15 -n a^n u[-n-1]  \frac{az^{-1} }{ (1-a z^{-1})^2 }  |z| < |a|
16 n^2 a^n u[n]  \frac{a z^{-1} (1 + a z^{-1}) }{(1-a z^{-1})^3} |z| > |a|
17 - n^2 a^n u[-n -1]  \frac{a z^{-1} (1 + a z^{-1}) }{(1-a z^{-1})^3} |z| < |a|
18 \cos(\omega_0 n) u[n]  \frac{ 1-z^{-1} \cos(\omega_0)}{ 1-2z^{-1}\cos(\omega_0)+ z^{-2}}  |z| >1
19 \sin(\omega_0 n) u[n]  \frac{ z^{-1} \sin(\omega_0)}{ 1-2z^{-1}\cos(\omega_0)+ z^{-2} }  |z| >1
20 a^n \cos(\omega_0 n) u[n] \frac{1-a z^{-1} \cos( \omega_0)}{1-2az^{-1}\cos(\omega_0)+ a^2 z^{-2}} |z|>|a|
21 a^n \sin(\omega_0 n) u[n]  \frac{ az^{-1} \sin(\omega_0) }{ 1-2az^{-1}\cos(\omega_0)+ a^2 z^{-2} } |z|>|a|

与傅里叶级数和傅里叶变换的关系[编辑]

对于区域 |z|=1(称为单位圆)内的 z 值,我们可以通过定义 z=e 来用单一实变量的函数来表示该变换。于是双边变换就简化为了傅里叶级数

   

\sum_{n=-\infty}^{\infty} x[n]\ z^{-n} = \sum_{n=-\infty}^{\infty} x[n]\ e^{-j\omega n},

 

 

 

 

(Eq.1)

   

也被称作 x[n] 序列的离散时间傅里叶变换(DTFT)。这个以 2π 为周期的函数是傅里叶变换周期性求和英语periodic summation,这使得它成为广泛使用的分析工具。要理解这一点,令 X(f) 为任意函数 x(t) 的傅里叶变换,该函数以某个间隔 T 采样就与 x[n] 序列相等。于是 x[n] 序列的DTFT可以写作:

\underbrace{
\sum_{n=-\infty}^{\infty} \overbrace{x(nT)}^{x[n]}\ e^{-j 2\pi f nT}
}_{\text{DTFT}} = \frac{1}{T}\sum_{k=-\infty}^{\infty} X(f-k/T).

若T的單位是秒,\textstyle f的單位即為赫兹。比較兩個數列可得 \textstyle \omega = 2\pi fT 為标准化频率英语Normalized frequency (digital signal processing)#Alternative normalizations,單位是radians per sample。數值ω=2π對應\textstyle f = \frac{1}{T} Hz. ,而且在替換 \textstyle f = \frac{\omega }{2\pi T},後,  Eq.1可以表示為傅里叶变换X(•):


\sum_{n=-\infty}^{\infty} x[n]\ e^{-j\omega n} = \frac{1}{T}\sum_{k=-\infty}^{\infty} \underbrace{X\left(\tfrac{\omega}{2\pi T} - \tfrac{k}{T}\right)}_{X\left(\frac{\omega - 2\pi k}{2\pi T}\right)}.

若數列x(nT)表示线性时不变系统冲激响应,這些函數也稱為频率响应,當x(nT)是週期性數列,其DTFT在一或多個共振頻率發散,在其他頻率均為零。這一般會用在共振頻率,振幅可變的狄拉克δ函数表示。因為其週期性,只會有有限個振幅,可以用較簡單許多的离散傅里叶变换來計算。(參照離散傅立葉變換#周期性

和拉氏变換的關係[编辑]

双线性变换[编辑]

双线性变换英语Bilinear transform可以用在連續時間濾波器(用拉氏域表示)和離散時間濾波器(用Z域表示)之間的轉換,其轉換關係如下:

s =\frac{2}{T} \frac{(z-1)}{(z+1)}

將一個拉氏域的函數H(s)轉換為Z域下的H(z),或是

z =\frac{2+sT}{2-sT}

從Z域轉換到拉氏域。藉由双线性变换,複數的s平面(拉氏变換)可以映射到複數的z平面(Z轉換)。這個轉換是非線性的,可以將S平面的整個jΩ軸映射到Z平面的单位圆內。因此,傅立葉變換(在jΩ axis計算的拉氏變換)變成離散時間傅立葉變換,前提是假設其傅立葉變換存在,也就是拉氏变換的收斂區域包括jΩ軸。

线性常系数差分方程[编辑]

线性常系数差分(LCCD)方程是基于自回归滑动平均的线性系统表达形式。

\sum_{p=0}^{N}y[n-p]\alpha_{p} = \sum_{q=0}^{M}x[n-q]\beta_{q}

上面等式两边可以同时除以 α0,如果非零,正规化 α0 = 1,LCCD方程可以写成

y[n] = \sum_{q=0}^{M}x[n-q]\beta_{q} - \sum_{p=1}^{N}y[n-p]\alpha_{p}.

LCCD方程的这种形式有利于更加明确“当前”输出 y[n] 是过去输出 y[n−p]、当前输入 x[n] 与之前输入 x[n−q] 的一个函数。

传递函数[编辑]

对上述方程去Z变换(使用线性和时移法则)得到

Y(z) \sum_{p=0}^{N}z^{-p}\alpha_{p} = X(z) \sum_{q=0}^{M}z^{-q}\beta_{q}

整理结果

H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{q=0}^{M}z^{-q}\beta_{q}}{\sum_{p=0}^{N}z^{-p}\alpha_{p}} = \frac{\beta_0 + z^{-1} \beta_1 + z^{-2} \beta_2 + \cdots + z^{-M} \beta_M}{\alpha_0 + z^{-1} \alpha_1 + z^{-2} \alpha_2 + \cdots + z^{-N} \alpha_N}.

零点和极点[编辑]

代数基本定理得知分子M(对应于 H 的零点)和分母有 N 个根(对应于极点)。用极点和零点重新整理传递函数

H(z) = \frac{(1 - q_1 z^{-1})(1 - q_2 z^{-1})\cdots(1 - q_M z^{-1}) } { (1 - p_1 z^{-1})(1 - p_2 z^{-1})\cdots(1 - p_N z^{-1})}

其中 qkk 阶零点,pkk 阶极点。零点和极点通常是复数,当在复平面(z平面)作图时称为零极点图英语pole–zero plot

此外,在 z = 0 和 z = ∞ 也可能存在零点和极点。如果我们把这些极点和零点以及高阶零点和极点考虑在内的花,零点和极点的数目总会相等。

通过对分母因式分解,可以使用部分分式分解可以转换回时域。这样做会导出系统的冲激响应和线性常系数差分方程。

输出响应[编辑]

如果一个系统 H(z) 由信号 X(z) 驱动,那么输出为 Y(z) = H(z)X(z)。通过对 Y(z) 部分分式分解并取逆Z变换可以得到输出 y[n]。在实际运用中,在分式分解 \frac{Y(z)}{z} 之后再乘 z 产生 Y(z) 的一个形式(含有很容易计算逆Z变换的项)往往很有用。

参见[编辑]

参考文献[编辑]

  1. ^ E. R. Kanasewich. Time sequence analysis in geophysics 3rd. University of Alberta. 1981: 185–186. ISBN 978-0-88864-074-1. 
  2. ^ J. R. Ragazzini and L. A. Zadeh. The analysis of sampled-data systems. Trans. Am. Inst. Elec. Eng. 1952, 71 (II): 225–234. 
  3. ^ Cornelius T. Leondes. Digital control systems implementation and computational techniques. Academic Press. 1996: 123. ISBN 978-0-12-012779-5. 
  4. ^ Eliahu Ibrahim Jury. Sampled-Data Control Systems. John Wiley & Sons. 1958. 
  5. ^ Eliahu Ibrahim Jury. Theory and Application of the Z-Transform Method. Krieger Pub Co. 1973. ISBN 0-88275-122-0. 
  6. ^ Eliahu Ibrahim Jury. Theory and Application of the Z-Transform Method. John Wiley & Sons. 1964: 1. 
  7. ^ 7.0 7.1 Enders A. Robinson, Sven Treitel. Digital Imaging and Deconvolution: The ABCs of Seismic Exploration and Processing Digital Imaging and Deconvolution: The ABCs of Seismic Exploration and Processing. SEG Books. 2008: 163, 375–376. ISBN 9781560801481. 
  8. ^ 8.0 8.1 E. R. Kanasewich. Time Sequence Analysis in Geophysics. University of Alberta. 1981: 186, 249. ISBN 9780888640741. 

延伸阅读[编辑]

  • Refaat El Attar, Lecture notes on Z-Transform, Lulu Press, Morrisville NC, 2005. ISBN 1-4116-1979-X.
  • Ogata, Katsuhiko, Discrete Time Control Systems 2nd Ed, Prentice-Hall Inc, 1995, 1987. ISBN 0-13-034281-5.
  • Alan V. Oppenheim and Ronald W. Schafer (1999). Discrete-Time Signal Processing, 2nd Edition, Prentice Hall Signal Processing Series. ISBN 0-13-754920-2.

外部链接[编辑]