海王星

本页使用了标题或全文手工转换
维基百科,自由的百科全书
海王星 ♆
航海家2號於1989年拍攝的海王星(颜色校准)
发现
發現者於爾班·勒威耶
约翰·戈特弗里德·加勒
發現日期1846年9月23日[1]
編號
形容詞Neptunian
軌道參數[3][註 1]`
曆元 J2000
遠日點4,553,946,490 km
30.44125206 AU
近日點4,452,940,833 km
29.76607095 AU
半長軸4,503,443,661 km
30.10366151 AU
離心率0.011214269
軌道週期60,327.624 
165.17156 
會合週期367.49 day[2]
平均軌道速度5.43 km/s[2]
平近點角267.767281°
軌道傾角1.767975°
6.43° to Sun's equator
升交點黃經131.794310°
近日點參數265.646853°
已知衛星16
物理特徵
赤道半徑24,764±15 km[4][5]
3.883 Earths
半徑24,341±30 km[4][5]
3.829 Earths
表面積7.6408×109 km²[5][6]
14.94 Earths
體積6.254×1013 km³[2][5]
57.74 Earths
質量1.0243×1026 kg[2]
17.147 Earths
平均密度1.638 g/cm³[2][5]
表面重力11.15 m/s²[2][5]
1.14 g)
23.5 km/s[2][5]
恆星週期0.6 day[2]
15 h 57 min 59 s
赤道自轉速度2.68 km/s
9,660 km/h
轉軸傾角28.32°[2]
北極赤經17 h 19 min 59 s
299.333°[4]
北極赤緯42.950°[4]
反照率0.290 (bond)
0.41 (geom.)[2]
表面溫度 最低 平均 最高
1 bar level 72 K[2](−201 °C)
0.1 bar 55 K[2]
視星等8.0 to 7.78 [2]
角直徑2.2" — 2.4" [2]
大氣特徵[2]
大氣標高19.7±0.6 km
成分
80±3.2% 氫分子(H2
9±3.2%
1.5±0.5% 甲烷
~0.019% 重氫(HD)
~0.00015% 乙烷

  • 氨硫化氫(NH4SH)
  • 甲烷(CH4

海王星太陽系八大行星中距离太陽最遠的,體積第四大的,但質量是第三大的行星。海王星的質量約為地球的17.147倍。海王星以羅馬神話中的尼普顿(Neptunus)命名,因為尼普顿是海神王,所以中文譯為海王星。天文學的符號Astronomical symbol for Neptune.(♆,Unicode編碼U+2646),是希臘神話的海神波塞頓使用的三叉戟

作爲一個冰巨行星,海王星的大氣層為主,還有微量的甲烷。大氣層中的甲烷是行星呈現淡藍色的一部分原因[7][8],因為天王星大氣中存在濃霧,所以海王星的藍色比有同樣甲烷份量的天王星更為鮮豔。海王星有太陽系最強烈的,測量到的風速高達每小時2,100公里[9] 1989年航海家2號飛掠過海王星,對其南半球的大暗斑和木星的大紅斑做了比較。海王星距離太陽比較遠,是太陽系中最冷的地區之一,海王星雲頂的溫度是-218℃(55K),[10][10][11],核心的溫度約為7,000℃,与太阳表面温度相当,这也和大多數已知的行星相似。

海王星於1846年9月23日被發現[1],是唯一通過數學預測而非有計畫的觀測發現的行星。天文學家利用天王星軌道的攝動推測出海王星的存在與可能的位置。迄今僅有航海家2號曾在1989年8月25日拜訪過海王星[12][13]。2003年,美國國家航空暨太空總署提出有如卡西尼-惠更斯號科學水準的海王星軌道探測計畫英语Neptune Orbiter,但不使用熱滋生反應提供電力的推進裝置;這項計劃由噴射推進實驗室加州理工學院一起完成。[14]

2022年7月12日,詹姆斯·韦伯望远镜再次对海王星进行了拍摄,30多年来首次清晰地拍摄到海王星的行星环[15]

歷史[编辑]

發現[编辑]

伽利略在1612年12月28日首次觀測並描繪出海王星,並在1613年1月27日再度觀測,但因為觀測的位置在夜空中靠近木星(在的位置),令這伽利略把兩次觀測都誤認海王星是一顆恆星[16],在伽利略第一次觀測的時候,海王星在轉向逆行的位置,剛開始逆行時的運動過於微小,以至於伽利略的小望遠鏡查覺不出位置的改變[17]。但在2009年7月,墨爾本大學的物理學家大衛·傑美生宣稱,有新的證據表明伽利略至少知道他看見的星星相對於背景的恆星有微量的相對運動[18]

於爾班·勒威耶,以自己的計算發現海王星的人。
伽利略·伽利莱

1821年,亞歷斯·布瓦出版天王星軌道表,[19] 隨後的觀測顯示出天王星的軌道與表中的位置偏差越來越大,布瓦因此假設有攝動體存在[20]。1843年,英國數學家約翰·柯西·亞當斯計算出會影響天王星運動的第八顆行星軌道,並將計算結果送交皇家天文學家喬治·比德爾·艾里,他询问了亞當斯一些在計算上的問題,亞當斯雖然草擬答案但未曾回覆。

1846年,法國工藝學院的天文學教師於爾班·勒威耶,在沒有同伴的支持下,獨立完成了海王星位置的推算。同年,英國的約翰·赫歇耳也開始擁護以數學的方法去搜尋行星,並說服詹姆斯·查理士著手進行[20][21]

在多次躭擱之後,查理士在1846年7月勉強開始搜尋的工作;而在同時,勒威耶也說服柏林天文台约翰·戈特弗里德·加勒搜尋行星。當時仍是柏林天文台的學生達赫斯特表示他正好完成勒威耶預測天區的最新星圖,可以做為尋找新行星時與恆星比對的參考圖。1846年9月23日晚間海王星被發現,與勒威耶預測的位置相距不到1°[22][23],但與亞當斯預測的位置相差12°。事後,查理士發現他在8月時已經兩度觀測到海王星,但因為對這件工作漫不經心而未曾進一步的核對[20][24][25]

由於民族優越感民族主義,這項發現在英法兩國引起爭議,國際間的輿論最終迫使勒威耶接受亞當斯也是共同的發現者。然而,在1998年,史學家才得以重新檢視天文學家艾根遺產中的海王星文件(來自格林威治天文臺的歷史文件,明顯是被艾根竊取近卅年,在他逝世之後才得重見天日。)[26]。在檢視過這些文件之後,有些史學家認為亞當斯不應該得到如同勒威耶的殊榮。[27]

命名[编辑]

發現之後不久,海王星不是被稱為“天王星外的行星”就是“勒維耶的行星”。约翰·戈特弗里德·加勒是第一位建議取名的人,他建議這顆行星稱為“雅努斯”(羅馬神話中看守門戶的雙面神)。在英國,查理士提議將之命名為“Oceanus[28];在法國,阿拉戈建議稱為“勒維耶”,但在法國之外有對這提議強烈的抗議聲浪[29]法國天文年曆當時以“赫歇耳”稱呼天王星,並以“勒維耶”稱呼這顆新發現的行星[30]。同時,在分開和獨立的場合,亞當斯建議修改天王星的名稱為“喬治”,而勒維耶經由經度委員會建議以“Neptune”作為新行星的名字。瓦西里·雅可夫列维奇·斯特鲁维 在1846年12月29日於聖彼得堡科學院挺身而出支持勒維耶建議的名稱。[31] 很快,海王星成為國際上公認的新名稱。在羅馬神話中的“Neptune”等同於希臘神話的“Poseidon”,都是海神,因此中文翻譯為海王星。 新發現的行星遵循了行星以羅馬神話中的眾神為名的原則[32],而除了天王星之外,都在遠古時代就被命名[33]

中文韓文日文越南文中,该行星名称的漢字写法都是“海王星”[34][35]。在印度,這顆行星的名稱是Varuna(即伐楼拿),是印度神話中的海神,與希臘-羅馬神話中的Poseidon/Neptune意義是相同的。

物理性質[编辑]

質量和結構[编辑]

海王星和地球大小比較。
海王星內部結構

海王星的質量是1.0243×1026 kg[2],是介于地球类木行星(指木星土星)之间的中等行星,它的质量既是地球的17倍,也是木星的1/18,由於它的质量小於典型的类木行星,而且密度、组成成份、内部结构也和类木行星有显著差别,因此海王星和天王星經常被归为类木行星的子类:冰巨行星,在寻找太阳系外行星的领域,海王星被用作一个通用的代号,指所发现的类似海王星质量的系外行星[36],就如同系外“木星”的用法。

海王星内部结构和天王星相似,行星核心是一个大概由1.2地球质量的矽酸鹽构成的混合体,中心壓力7Mbar(700GPa),大慨為地球中心的兩倍。海王星地幔的质量相当于10到15个地球质量,富含、甲烷和其它成份[1],是在極端高氣压和極端高熱的環境下形成的超臨界流體,这种高导电性的流体通常也被叫作水-氨海洋[37]

海王星内核的压力是地球表面气压的数百万倍,通过比较转速和扁率可知海王星的质量分布不如天王星集中。

大氣層[编辑]

大气层質量佔全海王星大約5-10%,並向中心延伸10%到20%,甲烷、氨和水的含量随深度增加而上升[10],而其温度、密度和氣压也隨之而不斷上升,进而逐渐過渡成為極熾热和極稠密的地幔海洋。

在高海拔處,海王星的大氣層由80%的和19%的組成 [10],也存在著微量甲烷。主要的吸收帶出現在600奈米以上波長的紅色至紅外線的光譜位置。與天王星一樣,大氣層的甲烷部分吸收了紅光,使海王星呈現淡藍色的色調[38],因為天王星大氣含有更多的濃霧,所以海王星的淡藍色比天王星柔和的青色較藍[39]

詹姆斯韦伯望远镜下的海王星

海王星的大氣層可以細分為兩個主要的區域:低層的對流層,該處的溫度隨高度降低;和平流層,該處的溫度隨著高度增加,兩層邊界的氣壓為0.1 (100kPa)[40]。平流層在氣壓低於10−5至 10−4微巴 (1-10) 處成為熱成層[40],並逐漸過渡為散逸層。 模型表明海王星對流層的雲帶取決於不同海拔高度的成分[41]。高海拔的雲出現在氣壓低於1帕之處,該處的溫度使甲烷可以凝結。當壓力在1巴至5巴 (100kPa至500kPa),氨和硫化氫的雲被認為會形成。壓力在5巴以上,雲可能由硫化銨硫化氫組成。更深處的水冰雲可以在壓力大約為50巴(5MPa)處被發現,該處的溫度達到0℃。在更下面,可能會發現氨和硫化氫的雲[42]

結合顏色和近紅外線的海王星影像,顯示在它的大氣層中的甲烷帶,和他的4顆衛星普羅狄斯拉瑞莎加勒蒂亞迪斯比納
海王星高層的雲帶在較低層雲頂形成陰影。

海王星高層的雲被觀察到在不透明的低層雲的頂部形成陰影,高層的雲也會在相同的緯度上環繞行星。這些環帶的寬度大約在50公里至150公里[43],並且在低層雲頂之上50公里至110公里。這些雲只在對流層上出現,因為平流層和熱成層沒有發生任何天氣。2023年8月,海王星的雲層可能因太陽耀班而消失[41]哈勃太空望遠鏡和地面望遠鏡三十年的觀測表明,海王星的雲活動與太陽週期有關,而非行星自己的季節。[44][45]

海王星的光譜表明,因為紫外線造成甲烷光解的產物,例如乙烷乙炔[10][40],導致平流層低層模糊了。平流層也含有微量的一氧化硫氰化氫[40][46]。海王星的平流層因為碳氫化合物()的濃度較高,比天王星的溫暖[40]

這顆行星的熱成層有著大約750K的異常高溫,其原因至今還不清楚[47][48]。因為這顆行星與太陽的距離太遙遠,要從太陽來的紫外線輻射獲得熱量是不可能的。一個候選的原因是行星的磁場離子產生交互作用;另一個候選者是由內部在大氣層中消耗的重力波。熱成層包含微量二氧化碳和水,其來源可能來自外部,例如流星體和塵埃[42][46]

磁層[编辑]

海王星有著與天王星類似的磁層,它的磁場相對自轉軸有著達47°的傾斜,並且偏離核心至少0.55半徑(偏離質心13,500 公里)。在航海家2號抵達海王星之前,天王星的磁層傾斜被假設是因為它躺著自轉的結果,但通過比較這兩顆行星的磁場,科學家現在認為這種極端的指向可能是行星內部流體的特徵。這個區域可能是由一層導電體液體(可能是氨、甲烷和水的混合體)形成的對流層流體運動[42],造成發電機的活動[49],由於內部巨大的壓力,這些導電體有可能是金屬氫[50][51],甚至可能有金屬銨[52][53][54]簡並態物質

磁場的偶極成分在海王星的磁赤道大約是14 微特斯拉(0.14 G[55]。海王星的偶磁矩大約是2.2 × 1017 T·m3(14 μT·RN3,此處RN是海王星的半徑)。海王星的磁場因其非偶極成分很多的貢獻,包括強度可能超過磁偶極矩的強大四極矩,因此在幾何結構上非常複雜。相較之下,地球、木星和土星的四極矩都非常小,並且相對於自轉軸的傾角也都不大。海王星巨大的四極矩可能是行星中心偏離和場發電機幾何限制的結果[56][57]

航海家2號在極紫外線和無線電頻率下的測量表明,海王星擁有微弱,複雜和獨特的極光,但因觀測時間所限,並未以紅外線探測。天文學家隨後使用哈勃太空望遠鏡,並沒有看到極光,與天王星清晰的極光形成鮮明對比[58][59]

海王星的弓形震波,在磁層開始減緩太陽風的速度,發生在距離行星半徑34.9倍之處。在磁層頂,磁層的壓力抵銷太陽風,磁層頂位於23-26.5倍海王星半徑之處,磁尾至少延伸至72倍的海王星半徑,並且還會伸展至更遠[56]

氣候[编辑]

大暗斑(上面),滑行車(中間白色雲彩)和小暗斑(底部)。

海王星和天王星的典型氣象活動的水平很不同。1986年,當旅行者2号航天器飞经天王星时,该行星視覺上相當平淡,沒有天氣現象被觀察到,而在1989年旅行者2号飛越期間,海王星展现了其天氣現象[60]。海王星的大氣層有太陽系中的最高风速,据推测源于其內部熱流的推动,它的天氣特征是极为剧烈的風暴系統,其風速達到超音速速度直至大约 2,100 km/h[9]。在赤道带區域,更加典型的风速能达到大约1,200 km/h。根據蒲福風級即目前世界氣象組織所建議的分級,地球風速最大為12級風,約 118 km/h。[61]

2007年又發現海王星的南極比其表面平均温度(大约为−200℃)高出约10℃。这样高出10℃的温度足以把甲烷释放到太空[62],而在其它区域海王星的上层大氣層中甲烷是被凍结着的。这个相对热点的形成是因为海王星的轨道倾角使得其南極在过去的40年受到太阳光照射,而一海王星年相当于165地球年。 随着海王星慢慢地移近太陽,南極將逐渐變暗,並且换成北極被太阳光照亮,这将使得甲烷释放区域从南极轉移到北極。 [63][64]

風暴[编辑]

旅行者2号所拍摄到的大暗斑。

1989年,美國航空航天局旅行者2号航天器發現了大斑,它是一個長13000公里,闊6000公里的飓风系统[60],約為歐亞大陸的大小。这个風暴和木星上的大紅斑類似。然而在1994年11月2日, 哈勃太空望遠鏡在海王星上沒有看見大斑,反而在北半球发现了类似大斑的一場新的風暴[65]

「滑行車」(Scooter)是位于大暗斑更南面的另一場風暴,是一组白色云团。1989年,當旅行者2号造访海王星前的那几个月被发现时,就被命名了这个綽號:因为它比大暗斑移動得更快[66],隨後圖像顯示出还有比滑行車移動得更快的雲团。

小暗斑是一場南部的颶風風暴,在1989旅行者2号访问期間是海王星第二强的風暴。它最初是完全黑暗的,但在"旅行者"接近过程中,一個明亮的核心逐渐形成,并且出现在大多数最高分辨率的圖像上[67]

2018年,有一個新的主黑斑和較細的黑斑被識別和研究。[68]2023年,人類首次在地球表面觀測海王星黑斑。[69]

海王星的黑斑被認為於對流層出現,海拔比較亮的雲層特徵低,[70]所以它們在上層雲層中以孔洞的形式出現。由於它們可以持續數個月,因此它們被認為是渦旋結構。[43]在對流層頂層附近形成的更亮和持久嘅甲烷雲常常和海王星的黑點相關[71]。伴雲的持續存在表明,一些之前出現過嘅暗點可能會繼續以氣旋的形式存在,但不再是可見的暗特徵。當黑斑遷移至過於接近赤道或可能透過其他未知機制的時候,它們可能會消失[72]

内熱[编辑]

因为海王星的轨道距离太阳很远,海王星从太阳得到的热量很少,所以海王星大气层顶端温度只有-218℃(55K),在大氣壓力為1巴時,溫度為72K,[73]而由大气层顶端向内温度稳定上升。和天王星类似,星球内部热量来源未知,但差異显著:作为太阳系最外側的行星,只接收到天王星接收到的陽光的40%,[40]而且幅射出從太陽中接收到的能量的2.61倍[74],而天王星只有1.1倍[75]。但海王星内部能量却大到维持了太阳系所有行星中已知的最高速风暴,对其内部热源有几种解释,包括行星核心的放射热源[76],行星生成时吸积盘塌缩能量的散热,还有重力波平流層界面的扰动[77][78],但這些原因卻難以解釋天王星缺乏內熱而保持和海王星的相似度的原因。[79]

卫星[编辑]

海王星(上)和海卫一(下)
海卫一彩色特寫

海王星有16顆已知的天然衛星[80]。其中最大的、也是唯一拥有足够质量成为球體海卫一在海王星被發現17天以後就被威廉·拉塞尔發現了。与其他太陽系行星的大型卫星不同,海卫一以逆行軌道运行,说明它是被海王星俘获的,並很可能曾經是一個柯伊伯帶天体[81]。它与海王星的距离足够近,所以它被锁定在同步軌道上,它将缓慢地经螺旋轨道接近海王星,當它在大約三十六億年後到達洛希極限,它最終將被海王星的引力撕裂[82]。海卫一是太陽系中被測量到的最冷的天体[83],溫度为−235℃(38K)[84][85],這是因為海卫一的反照率非常高,使其反射大量而不是吸收陽光。[86][87]

海卫一,与月球的对比
名称 直徑(公里) 质量(公斤) 軌道半徑(公里) 軌道週期(日)
海卫一 2700(月球的80%) 2.15×1022
(月球的30%)
354,800
(月球的90%)
5.877
(月球的20%)
海王星的衛星海衛八

海王星第二个已知卫星(依發現順序)是形状不规则的海卫二,它的轨道是太阳系中离心率最大的卫星轨道之一。從1989年7月到9月,“旅行者2号”發現了六个新的海王星衛星[88]。其中形状不規則的海卫八以拥有一個達到其極限密度而不会被它自身的引力变成球体的最大体积而聞名[89]。尽管它是质量第二大的海王星衛星,它的质量仅有海卫一質量的0.25%。最靠近海王星的四個衛星,海衛三海衛四海衛五海衛六,軌道在海王星的環之內。第二靠外卫星的海衛七在1981年被观察到,當時它遮擋了一顆恆星。起初掩星的原因被归结为行星环上的弧,但据1989年“旅行者2号”的觀察,才發現是由衛星造成的。五个在2002年和2003之間發現的形状不規則衛星在2004年被公開。[90][91]而現在已知體積最小的一顆衛星,S/2004 N 1則於2013年7月宣布發現,這顆卫星是以結合多張哈勃太空望遠鏡的影像而被發現[92]。由于海王星得名于羅馬神话的海神,它的衛星都以低等的海神命名。[32]

針對海王星衛星發現日期的時間表,參見太陽系行星和它們的天然衛星的發現時間表

行星环[编辑]

海王星的圓環,由旅行者2號拍摄

这颗藍色行星有着暗淡的天藍色圓環,但与土星比起来相去甚远[93]。這些環可能由塗有矽酸鹽或碳基材料的冰粒組成,可能令它們呈現微紅色色調[94]。三個主要環是伽勒環、勒威耶環和拉塞爾環。狹窄的亞當斯環距海王星中心63,000公里外,勒维耶環距中心53,000公里,更寬、更暗的伽勒環距中心42,000公里。勒维耶環外侧的暗淡圆环被命名为拉塞尔;再往外是距中心57,000公里的阿拉戈[95]

愛德華·奎南为首的团隊在1968年發現第一個環[96][97],這些環在1980年代初期曾被認為也許是不完整的[98],證據出現在1984年的一次恒星掩星期間,當時環在消失時遮掩了一顆行星,但在出現時卻沒有[99]。然而,“旅行者2号”的发现表明并非如此,旅行者2号在1989年拍摄的图像發現了幾個微弱的光環並補全不完整的部分,解決了這個問題。

這些行星环有一個特别的「堆状」結構。[100]

最外層的圓環亞當斯,包含五段显著的弧,現在名為“Courage”、“Liberté”、“Egalité 1”、“Egalité 2”和“Fraternité”(勇氣、自由、平等、博爱)[101]。 弧的存在難以理解,因為運動定律预示弧应在不长的時间内变成平均的圆环。目前天文學家认为环内侧的卫星海卫六的引力作用束缚了弧的运动。[102][103]

2005年新发表的在地球上觀察的结果表明,海王星的環比原先以为的更不穩定。凱克天文台在2002年和2003年拍摄的图像显示,與"旅行者2号"拍摄時相比,海王星环发生了显著的退化,特别是“自由弧”,也許在一個世紀左右就会消失。[104]

觀測[编辑]

海王星的亮度介乎视星等+7.7和+8.0,肉眼不可見,比木星伽利略衛星矮行星穀神星小行星 灶神星智神星虹神星婚神星韶神星都暗。在天文望遠鏡或优质的雙筒望遠鏡中,海王星显现為一个小小的与天王星很相似的藍色圆盤。藍色來自在于它大氣中的甲烷[105]它的视徑之小给研究造成不少困难,从望遠鏡中获得的數據相當有限,情況直到出現哈伯太空望遠鏡和大型地基望遠鏡與自适应光学技术才获得改观。

轨道与自转[编辑]

海王星的轨道周期(年)大约相当于164.79地球年。自从于1846年被发现至今,它只完成绕轨道转一整圈(以發現點作起點)。海王星于2011年7月12日回到绕日公转轨道上它被發現时的那个点。[106] 由於地球处于其365.25天周期軌道的不同地点,届时我們看到的海王星并不会处在它被发现时在天空中的那个位置。從地球上观察,海王星冲日周期为367天,這些周期使它在2010年4月和7月以及2011年10月和11月接近1846年它被发现时的坐标。在2010年8月20日,海王星将于发现它的1846年中的同一天再度冲日。

海王星的自转周期(日)大约是15小时58分钟。由于它的自转轴倾角为28°,与地球(23.45°)相近,海王星日与地球日时间长度的不同与其漫长的年比起来就算不得什么了。

探測[编辑]

1989年8月25日旅行者2号到达距海王星最近的地点。因為這是旅行者2号飞船所要飞近的最後一个主要行星,也就没有后续轨道限制了,它的轨道非常接近衛星海卫一,正如旅行者1号飞越土星和它的衛星土卫六时所选择的轨道那样。这次探测发现了大暗斑,但后来用哈伯太空望遠鏡觀察海王星时发现大暗斑已经消失。大暗斑起初被认为是一大块雲,而据后来推断,它应该是可见云层上的一個孔洞。海王星上的风暴是太陽系类木行星中最强的。考虑到它处于太阳系的外围,所接受的太陽光照比地球上微弱1000倍(仍然非常明亮,视星等-21),这个现象和科学家们的原有的期望不符。曾经普遍认为认为行星离太陽越遠,驱动風暴的能量就应该有越少。木星上的风速已达數百千米/小時,而在更加遙遠的海王星上,科學家發現風速没有更慢而是更快了(1600千米/小时)。這种明顯反常現象的一个可能原因是,如果风暴有足够的能量,将会产生湍流,进而減慢风速(正如在木星上那样)。 然而在海王星上,太陽能过于微弱,一旦开始刮风,它們遇到很少的阻碍,从而能保持極高的速度。海王星释放的能量比它從太陽得到的还多,[107] 因而这些風暴也可能有着尚未確定的內在能量來源。1989年PBS用從“旅行者2号”傳回地球的图像作了一个名为Neptune All Night的整晚節目。[108]

注释[编辑]

  1. ^ Orbital elements refer to the barycenter of the Neptune system, and are the instantaneous osculating orbit values at the precise J2000 epoch. Barycenter quantities are given because, in contrast to the planetary centre, they do not experience appreciable changes on a day-to-day basis from to the motion of the moons.

参考文献[编辑]

  1. ^ 1.0 1.1 1.2 Neptune. Solarviews. [2007-08-13]. (原始内容存档于2011-08-17). 
  2. ^ 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 Williams, Dr. David R. Neptune Fact Sheet. NASA. 2004-09-01 [2007-08-14]. (原始内容存档于2011-08-17). 
  3. ^ Yeomans, Donald K. HORIZONS System. NASA JPL. 2006-07-13 [2007-08-08]. (原始内容存档于2007-03-28).  — 進入網站后,前往“web interface”,之後選擇“Ephemeris Type: ELEMENTS”、“Target Body: Neptune Barycenter”和“Center: Sun”。
  4. ^ 4.0 4.1 4.2 4.3 Seidelmann, P. Kenneth; Archinal, B. A.; A’hearn, M. F.; et.al. Report of the IAU/IAGWorking Group on cartographic coordinates and rotational elements: 2006. Celestial Mech. Dyn. Astr. 2007, 90: 155–180 [2007-10-16]. Bibcode:2007CeMDA..98..155S. doi:10.1007/s10569-007-9072-y. (原始内容存档于2019-05-19). 
  5. ^ 5.0 5.1 5.2 5.3 5.4 5.5 5.6 Refers to the level of 1 bar atmospheric pressure
  6. ^ NASA: Solar System Exploration: Planets: Neptune: Facts & Figures. [2007-10-16]. (原始内容存档于2017-12-09). 
  7. ^ Munsell, Kirk; Smith, Harman; Harvey, Samantha. Neptune overview. Solar System Exploration. NASA. 13 November 2007 [20 February 2008]. (原始内容存档于3 March 2008). 
  8. ^ info@noirlab.edu. Gemini North Telescope Helps Explain Why Uranus and Neptune Are Different Colors - Observations from Gemini Observatory, a Program of NSF's NOIRLab, and other telescopes reveal that excess haze on Uranus makes it paler than Neptune. www.noirlab.edu. May 31, 2022 [30 July 2022]. (原始内容存档于30 July 2022) (英语). 
  9. ^ 9.0 9.1 Suomi, V. E.; Limaye, S. S.; Johnson, D. R. High winds of Neptune - A possible mechanism. Science. 1991, 251: 929–932 [2007-10-23]. Bibcode:1991Sci...251..929S. doi:10.1126/science.251.4996.929. (原始内容存档于2007-10-11). 
  10. ^ 10.0 10.1 10.2 10.3 10.4 Hubbard, W. B. Neptune's Deep Chemistry. Science. 1997, 275 (5304): 1279–1280 [2008-02-19]. PMID 9064785. doi:10.1126/science.275.5304.1279. (原始内容存档于2008-06-21). 
  11. ^ Nettelmann, N.; French, M.; Holst, B.; Redmer, R. Interior Models of Jupiter, Saturn and Neptune (PDF). University of Rostock. [25 February 2008]. (原始内容 (PDF)存档于18 July 2011). 
  12. ^ Chang, Kenneth. Dark Spots in Our Knowledge of Neptune. The New York Times. 18 October 2014 [21 October 2014]. (原始内容存档于28 October 2014). 
  13. ^ Exploration | Neptune. NASA Solar System Exploration. [2020-02-03]. (原始内容存档于17 July 2020). In 1989, NASA's Voyager 2 became the first-and only-spacecraft to study Neptune up close. 
  14. ^ T. R. Spilker and A. P. Ingersoll(2004年11月9日). Outstanding Science in the Neptune System From an Aerocaptured Vision Mission 互联网档案馆存檔,存档日期2007-10-27.. 36th DPS Meeting, Session 14 Future Missions.
  15. ^ Neptune Close Up (NIRCam). WebbTelescope.org. [2022-10-16]. (原始内容存档于2022-09-27) (英语). 
  16. ^ Hirschfeld, Alan. Parallax:The Race to Measure the Cosmos. 纽约,纽约: Henry Holt. 2001. ISBN 0-8050-7133-4. 
  17. ^ Littmann, Mark; Standish, E.M. Planets Beyond: Discovering the Outer Solar System. Courier Dover Publications. 2004. ISBN 0-4864-3602-0. 
  18. ^ Britt, Robert Roy. Galileo discovered Neptune, new theory claims. MSNBC News. 2009 [2009-07-10]. (原始内容存档于2012-10-19). 
  19. ^ A. Bouvard (1821), Tables astronomiques publiées par le Bureau des Longitudes de France页面存档备份,存于互联网档案馆, Paris, FR: Bachelier
  20. ^ 20.0 20.1 20.2 Airy, G.B. Account of some circumstances historically connected with the discovery of the planet exterior to Uranus. Monthly Notices of the Royal Astronomical Society. 13 November 1846, 7 (10): 121–44 [12 June 2019]. Bibcode:1846MNRAS...7..121A. doi:10.1002/asna.18470251002. (原始内容存档于29 September 2021). 
  21. ^ Challis, Rev. J. Account of observations at the Cambridge observatory for detecting the planet exterior to Uranus. Monthly Notices of the Royal Astronomical Society. 13 November 1846, 7 (9): 145–149 [25 August 2019]. Bibcode:1846MNRAS...7..145C. doi:10.1093/mnras/7.9.145可免费查阅. (原始内容存档 (PDF)于4 May 2019). 
  22. ^ Gaherty, Geoff. Neptune Completes First Orbit Since Its Discovery in 1846. space.com. 12 July 2011 [3 September 2019]. (原始内容存档于25 August 2019). 
  23. ^ Levenson, Thomas. The Hunt for Vulcan ... and how Albert Einstein Destroyed a Planet, Discovered Relativity, and Deciphered the Universe. Random House. 2015: 38. 
  24. ^ Sack, Harald. James Challis and his failure to discover the planet Neptune. scihi.org. 12 December 2017 [15 November 2021]. 
  25. ^ Galle, J.G. Account of the discovery of the planet of Le Verrier at Berlin. Monthly Notices of the Royal Astronomical Society. 13 November 1846, 7 (9): 153. Bibcode:1846MNRAS...7..153G. doi:10.1093/mnras/7.9.153可免费查阅. 
  26. ^ Kollerstrom, Nick. Neptune's Discovery. The British Case for Co-Prediction.. Unuiversity College London. 2001 [2007-03-19]. (原始内容存档于2005-11-11). 
  27. ^ DIO 9.1页面存档备份,存于互联网档案馆)(1999年6月); William Sheehan, Nicholas Kollerstrom, Craig B. Waff(2004年12月). The Case of the Pilfered Planet - Did the British steal Neptune?页面存档备份,存于互联网档案馆Scientific American.
  28. ^ Moore (2000):206
  29. ^ Baum, Richard; Sheehan, William. In Search of Planet Vulcan: The ghost in Newton's clockwork universe. Basic Books. 2003: 109–10. ISBN 978-0-7382-0889-3. 
  30. ^ Gingerich, Owen. The naming of Uranus and Neptune. Astronomical Society of the Pacific Leaflets. October 1958, 8 (352): 9–15. Bibcode:1958ASPL....8....9G. 
  31. ^ Hind, J. R. Second report of proceedings in the Cambridge Observatory relating to the new Planet (Neptune). Astronomische Nachrichten. 1847, 25: 309 [2007-10-24]. Bibcode:1847AN.....25..309.. (原始内容存档于2008-09-08).  Smithsonian/NASA Astrophysics Data System (ADS).
  32. ^ 32.0 32.1 Planet and Satellite Names and Discoverers. Gazetteer of Planetary Nomenclature. U.S. Geological Survey. 17 December 2008 [26 March 2012]. (原始内容存档于9 August 2018). 
  33. ^ Using Eyepiece & Photographic Nebular Filters, Part 2 (October 1997)页面存档备份,存于互联网档案馆). Hamilton Amateur Astronomers at amateurastronomy.org.
  34. ^ Planetary linguistics. nineplanets.org. [8 April 2010]. (原始内容存档于7 April 2010). 
  35. ^ Sao Hải Vương – "Cục băng" khổng lồ xa tít tắp. Kenh14. 31 October 2010 [30 July 2018]. (原始内容存档于30 July 2018).  已忽略未知参数|lang=(建议使用|language=) (帮助)
  36. ^ Trio of Neptunes. Astrobiology Magazine. 2006年5月21日 [2007-08-06]. (原始内容存档于2007-09-29). 
  37. ^ Atreya, S.; Egeler, P.; Baines, K. Water-ammonia ionic ocean on Uranus and Neptune? (pdf). Geophysical Research Abstracts. 2006, 8: 05179 [2007-12-05]. (原始内容存档 (PDF)于2019-09-18). 
  38. ^ Crisp, D.; Hammel, H. B. Hubble Space Telescope Observations of Neptune. Hubble News Center. 1995-06-14 [2007-04-22]. (原始内容存档于2016-03-29). 
  39. ^ NASA Science Editorial Team. Why Uranus and Neptune Are Different Colors. NASA. May 31, 2022 [2023-10-30]. 
  40. ^ 40.0 40.1 40.2 40.3 40.4 40.5 Lunine, Jonathan I. The Atmospheres of Uranus and Neptune (PDF). Lunar and Planetary Observatory, University of Arizona. 1993 [2008-03-10]. (原始内容存档于2011-08-17). 
  41. ^ 41.0 41.1 Andrews, Robin George. Neptune's Clouds Have Vanished, and Scientists Think They Know Why - A recent study suggests a relationship between solar cycles and the atmosphere of the solar system's eighth planet.. The New York Times. 18 August 2023 [21 August 2023]. (原始内容存档于18 August 2023). 
  42. ^ 42.0 42.1 42.2 Elkins-Tanton (2006):79–83.
  43. ^ 43.0 43.1 Max, C.E.; Macintosh, B.A.; Gibbard, S.G.; Gavel, D.T.; et al. Cloud Structures on Neptune Observed with Keck Telescope Adaptive Optics. The Astronomical Journal. 2003, 125 (1): 364–75. Bibcode:2003AJ....125..364M. doi:10.1086/344943可免费查阅. 
  44. ^ Gianopoulos, Andrea. Neptune's Disappearing Clouds Linked to the Solar Cycle. NASA. 16 August 2023 [24 August 2023]. 
  45. ^ Chavez, Erandi; de Pater, Imke; Redwing, Erin; Molter, Edward M.; Roman, Michael T.; Zorzi, Andrea; Alvarez, Carlos; Campbell, Randy; de Kleer, Katherine; Hueso, Ricardo; Wong, Michael H.; Gates, Elinor; Lynam, Paul David; Davies, Ashley G.; Aycock, Joel; Mcilroy, Jason; Pelletier, John; Ridenour, Anthony; Stickel, Terry. Evolution of Neptune at near-infrared wavelengths from 1994 through 2022. Icarus. 1 November 2023, 404: 115667 [24 August 2023]. Bibcode:2023Icar..40415667C. ISSN 0019-1035. S2CID 259515455. arXiv:2307.08157可免费查阅. doi:10.1016/j.icarus.2023.115667. The clear positive correlation we find between cloud activity and Solar Lyman-Alpha (121.56 nm) irradiance lends support to the theory that the periodicity in Neptune’s cloud activity results from photochemical cloud/haze production triggered by Solar ultraviolet emissions. 
  46. ^ 46.0 46.1 Encrenaz, Therese. ISO observations of the giant planets and Titan: what have we learnt?. Planet. Space Sci. 2003, 51: 89–103 [2011-02-14]. Bibcode:2003P&SS...51...89E. doi:10.1016/S0032-0633(02)00145-9. (原始内容存档于2008-02-21). 
  47. ^ Broadfoot, A.L.; Atreya, S.K.; Bertaux, J.L. et al. Ultraviolet Spectrometer Observations of Neptune and Triton (pdf). Science. 1999, 246 (4936): 1459–1456 [2011-02-14]. Bibcode:1989Sci...246.1459B. PMID 17756000. doi:10.1126/science.246.4936.1459. (原始内容存档 (PDF)于2018-05-04). 
  48. ^ Herbert, Floyd; Sandel, Bill R. Ultraviolet Observations of Uranus and Neptune. Planet.Space Sci. 1999, 47: 1119–1139 [2011-02-14]. Bibcode:1999P&SS...47.1119H. doi:10.1016/S0032-0633(98)00142-1. (原始内容存档于2008-02-21). 
  49. ^ Stanley, Sabine; Bloxham, Jeremy. Convective-region geometry as the cause of Uranus' and Neptune's unusual magnetic fields. Nature. 2004年3月11日, 428: 151–153. Bibcode:2004Natur.428..151S. doi:10.1038/nature02376. 
  50. ^ Holleman, Arnold Frederik; Wiberg, Egon, Wiberg, Nils , 编, Inorganic Chemistry, 由Eagleson, Mary; Brewer, William翻译, San Diego/Berlin: Academic Press/De Gruyter, 2001, ISBN 0-12-352651-5 
  51. ^ Stevenson, D. J. Does metallic ammonium exist?. Nature (Nature Publishing Group). 1975-11-20, 258: 222–223 [2012-01-13]. Bibcode:1975Natur.258..222S. doi:10.1038/258222a0. (原始内容存档于2014-11-04). 
  52. ^ Bernal, M. J. M.; Massey, H. S. W. Metallic Ammonium (PDF). Monthly Notices of the Royal Astronomical Society (Wiley-Blackwell for the Royal Astronomical Society). 1954-02-03, 114: 172–179 [2012-01-13]. Bibcode:1954MNRAS.114..172B. (原始内容存档 (PDF)于2018-01-12). 
  53. ^ Porter, W. S., Astr. J., 66, 243–245 (1961). 5.
  54. ^ Ramsey, W. H., Planet. Space Sci., 15, 1609–1623 (1967).
  55. ^ Connerney, J.E.P.; Acuna, Mario H.; Ness, Norman F. The magnetic field of Neptune. Journal of Geophysics Research. 1991, 96: 19,023–42 [2009-07-04]. (原始内容存档于2016-06-03). 
  56. ^ 56.0 56.1 Ness, N. F.; Acuña, M. H.; Burlaga, L. F.; Connerney, J. E. P.; Lepping, R. P.; Neubauer, F. M. Magnetic Fields at Neptune. Science. 1989, 246 (4936): 1473–1478 [2008-02-25]. Bibcode:1989Sci...246.1473N. PMID 17756002. doi:10.1126/science.246.4936.1473. (原始内容存档于2008-06-21). 
  57. ^ Russell, C. T.; Luhmann, J. G. Neptune: Magnetic Field and Magnetosphere. University of California, Los Angeles. 1997 [2006-08-10]. (原始内容存档于2019-06-29). 
  58. ^ Lamy, L. Auroral emissions from Uranus and Neptune. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences (The Royal Society). November 9, 2020, 378 (2187): 20190481. Bibcode:2020RSPTA.37890481L. ISSN 1364-503X. PMC 7658782可免费查阅. PMID 33161867. doi:10.1098/rsta.2019.0481可免费查阅. 
  59. ^ ESA Portal – Mars Express discovers auroras on Mars. European Space Agency. 11 August 2004 [5 August 2010]. (原始内容存档于19 October 2012). 
  60. ^ 60.0 60.1 Lavoie, Sue. PIA02245: Neptune's blue-green atmosphere. NASA JPL. 16 February 2000 [28 February 2008]. (原始内容存档于5 August 2013). 
  61. ^ Hammel, H.B.; et al. Neptune's wind speeds obtained by tracking clouds in Voyager images. Science. 1989, 245: 1367–1369 [2007-12-05]. Bibcode:1989Sci...245.1367H. doi:10.1126/science.245.4924.1367. (原始内容存档于2008-01-05). 
  62. ^ Orton, G.S.; Encrenaz T.; Leyrat C.; Puetter, R.; et al. Evidence for methane escape and strong seasonal and dynamical perturbations of Neptune's atmospheric temperatures. Astronomy and Astrophysics. 2007, 473 (1): L5–L8. Bibcode:2007A&A...473L...5O. S2CID 54996279. doi:10.1051/0004-6361:20078277可免费查阅. 
  63. ^ Neptune has a 'warm' south pole, astronomers find. Yahoo! News. 2007-09-19 [2007-09-20]. 
  64. ^ Orton, Glenn; Encrenaz, Thérèse. A Warm South Pole? Yes, On Neptune!. ESO. 18 September 2007 [20 September 2007]. (原始内容存档于23 March 2010). 
  65. ^ Hammel, H.B.; Lockwood, G.W.; Mills, J.R.; Barnet, C.D. Hubble Space Telescope Imaging of Neptune's Cloud Structure in 1994. Science. 1995, 268 (5218): 1740–42. Bibcode:1995Sci...268.1740H. PMID 17834994. S2CID 11688794. doi:10.1126/science.268.5218.1740. 
  66. ^ Burgess (1991):64–70.
  67. ^ Lavoie, Sue. PIA00064: Neptune's Dark Spot (D2) at High Resolution. NASA JPL. 29 January 1996 [28 February 2008]. (原始内容存档于27 September 2013). 
  68. ^ Shannon Stirone. Neptune's Weird Dark Spot Just Got Weirder – While observing the planet's large inky storm, astronomers spotted a smaller vortex they named Dark Spot Jr.. The New York Times. 22 December 2020 [22 December 2020]. (原始内容存档于22 December 2020). 
  69. ^ information@eso.org. Mysterious Neptune dark spot detected from Earth for the first time. www.eso.org. [2023-08-26] (英语). 
  70. ^ S.G., Gibbard; de Pater, I.; Roe, H.G.; Martin, S.; et al. The altitude of Neptune cloud features from high-spatial-resolution near-infrared spectra (PDF). Icarus. 2003, 166 (2): 359–74 [26 February 2008]. Bibcode:2003Icar..166..359G. doi:10.1016/j.icarus.2003.07.006. (原始内容 (PDF)存档于20 February 2012). 
  71. ^ Stratman, P.W.; Showman, A.P.; Dowling, T.E.; Sromovsky, L.A. EPIC Simulations of Bright Companions to Neptune's Great Dark Spots (PDF). Icarus. 2001, 151 (2): 275–85 [26 February 2008]. Bibcode:1998Icar..132..239L. doi:10.1006/icar.1998.5918. (原始内容存档 (PDF)于27 February 2008). 
  72. ^ Sromovsky, L.A.; Fry, P.M.; Dowling, T.E.; Baines, K.H. The unusual dynamics of new dark spots on Neptune. Bulletin of the American Astronomical Society. 2000, 32: 1005. Bibcode:2000DPS....32.0903S. 
  73. ^ Lindal, Gunnar F. The atmosphere of Neptune – an analysis of radio occultation data acquired with Voyager 2. Astronomical Journal. 1992, 103: 967–82. Bibcode:1992AJ....103..967L. doi:10.1086/116119可免费查阅. 
  74. ^ Pearl, J.C.; Conrath, B.J. The albedo, effective temperature, and energy balance of Neptune, as determined from Voyager data. Journal of Geophysical Research: Space Physics. 1991, 96: 18,921–30. Bibcode:1991JGR....9618921P. doi:10.1029/91ja01087. 
  75. ^ Class 12 – Giant Planets – Heat and Formation. 3750 – Planets, Moons & Rings. Colorado University, Boulder. 2004 [13 March 2008]. (原始内容存档于21 June 2008). 
  76. ^ Williams, Sam. Heat Sources Within the Giant Planets. 2004 [2007-10-10]. (原始内容 (DOC)存档于2007-10-25). 
  77. ^ McHugh, J. P., Computation of Gravity Waves near the Tropopause 互联网档案馆存檔,存档日期2007-10-27., AAS/Division for Planetary Sciences Meeting Abstracts, p. 53.07, September, 1999
  78. ^ McHugh, J. P. and Friedson, A. J., Neptune's Energy Crisis: Gravity Wave Heating of the Stratosphere of Neptune, Bulletin of the American Astronomical Society, p.1078, September, 1996
  79. ^ Imke de Pater and Jack J. Lissauer (2001), Planetary Sciences 互联网档案馆存檔,存档日期29 September 2021., 1st edition, p. 224.
  80. ^ Kelly Beatty. Neptune's Newest Moon. Sky & Telescope. 2013-07-15 [2013-07-15]. (原始内容存档于2013-07-16). 
  81. ^ Agnor, Craig B.; Hamilton, Douglas P. Neptune's capture of its moon Triton in a binary–planet gravitational encounter. Nature. 2006, 441 (7090): 192–94. Bibcode:2006Natur.441..192A. PMID 16688170. S2CID 4420518. doi:10.1038/nature04792. 
  82. ^ Chyba, Christopher F.; Jankowski, D.G.; Nicholson, P.D. Tidal evolution in the Neptune-Triton system. Astronomy and Astrophysics. 1989, 219 (1–2): L23–L26. Bibcode:1989A&A...219L..23C. 
  83. ^ Wilford, John N. Triton May Be Coldest Spot in Solar System. The New York Times. 29 August 1989 [29 February 2008]. (原始内容存档于10 December 2008). 
  84. ^ Triton - NASA Science. [7 January 2024]. (原始内容存档于7 January 2024). 
  85. ^ Nelson, R.M.; Smythe, W.D.; Wallis, B.D.; Horn, L.J.; et al. Temperature and Thermal Emissivity of the Surface of Neptune's Satellite Triton. Science. 1990, 250 (4979): 429–31. Bibcode:1990Sci...250..429N. PMID 17793020. S2CID 20022185. doi:10.1126/science.250.4979.429. 
  86. ^ 12.3: Titan and Triton. 7 October 2016 [7 January 2024]. (原始内容存档于7 January 2024). 
  87. ^ Triton: Neptune's Moon. January 2010 [7 January 2024]. (原始内容存档于7 January 2024). 
  88. ^ Stone, E.C.; Miner, E.D. The Voyager 2 Encounter with the Neptunian System. Science. 1989, 246 (4936): 1417–21. Bibcode:1989Sci...246.1417S. PMID 17755996. S2CID 9367553. doi:10.1126/science.246.4936.1417. 
  89. ^ Brown, Michael E. The Dwarf Planets. California Institute of Technology, Department of Geological Sciences. [9 February 2008]. (原始内容存档于19 July 2011). 
  90. ^ Holman, Matthew J.; et al. Discovery of five irregular moons of Neptune. Nature. 2004-08-19, 430: 865–867 [2007-12-05]. Bibcode:2004Natur.430..865H. doi:10.1038/nature02832. (原始内容存档于2008-01-02). 
  91. ^ Five new moons for planet Neptune. BBC News. 2004-08-18 [2007-08-06]. (原始内容存档于2007-08-08). 
  92. ^ Grush, Loren. Neptune's newly discovered moon may be the survivor of an ancient collision. The Verge. 2019-02-20 [2019-02-22]. (原始内容存档于21 February 2019). 
  93. ^ O"Callaghan, Jonathan. Neptune and Its Rings Come Into Focus With Webb Telescope - New images from the space-based observatory offer a novel view of the planet in infrared.. The New York Times. 21 September 2022 [23 September 2022]. (原始内容存档于22 September 2022). 
  94. ^ Cruikshank, Dale P. Neptune and Triton. University of Arizona Press. 1996: 703–804. ISBN 978-0-8165-1525-7. 
  95. ^ Gazetteer of Planetary Nomenclature Ring and Ring Gap Nomenclature (December 8, 2004)页面存档备份,存于互联网档案馆). USGS - Astrogeology Research Program.
  96. ^ Wilford, John N. Data Shows 2 Rings Circling Neptune. The New York Times. 10 June 1982 [29 February 2008]. (原始内容存档于10 December 2008). 
  97. ^ Guinan, E.F.; Harris, C.C.; Maloney, F.P. Evidence for a Ring System of Neptune. Bulletin of the American Astronomical Society. 1982, 14: 658. Bibcode:1982BAAS...14..658G. 
  98. ^ Goldreich, P.; Tremaine, S.; Borderies, N.E.F. Towards a theory for Neptune's arc rings (PDF). Astronomical Journal. 1986, 92: 490–94 [12 June 2019]. Bibcode:1986AJ.....92..490G. doi:10.1086/114178. (原始内容存档 (PDF)于29 September 2021). 
  99. ^ Nicholson, P.D.; et al. Five Stellar Occultations by Neptune: Further Observations of Ring Arcs. Icarus. 1990, 87 (1): 1–39. Bibcode:1990Icar...87....1N. doi:10.1016/0019-1035(90)90020-A可免费查阅. 
  100. ^ Missions to Neptune. The Planetary Society. 2007 [2007-10-11]. (原始内容存档于2006-02-08). 
  101. ^ Cox, Arthur N. Allen's Astrophysical Quantities. Springer. 2001. ISBN 978-0-387-98746-0. 
  102. ^ Munsell, Kirk; Smith, Harman; Harvey, Samantha. Planets: Neptune: Rings. Solar System Exploration. NASA. 13 November 2007 [29 February 2008]. (原始内容存档于4 July 2012). 
  103. ^ Salo, Heikki; Hänninen, Jyrki. Neptune's Partial Rings: Action of Galatea on Self-Gravitating Arc Particles. Science. 1998, 282 (5391): 1102–04. Bibcode:1998Sci...282.1102S. PMID 9804544. doi:10.1126/science.282.5391.1102. 
  104. ^ Neptune's rings are fading away. New Scientist. 2005-03-26 [2007-08-06]. (原始内容存档于2008-10-08). 
  105. ^ Moore, Patrick. The Data Book of Astronomy. 2000: 207. 
  106. ^ Horizons Output for Neptune 2010-2011. [2007-11-14]. (原始内容存档于2008-12-10). 
  107. ^ Beebe R. The clouds and winds of Neptune. Planetary Report. 1992, 12: 18–21 [2007-12-05]. Bibcode:1992PlR....12b..18B. (原始内容存档于2008-01-05). 
  108. ^ Fascination with Distant Worlds. SETI Institute. [2007-10-03]. (原始内容存档于2007-11-03). 

外部連結[编辑]

參見[编辑]