非线性回归

维基百科,自由的百科全书
跳到导航 跳到搜索
米-门二氏动力学 的详细信息图像

在统计学中, 非线性回归回归分析的一种形式,其中观测数据由函数建模,该函数是模型参数的非线性组合并且取决于一个或多个独立变量。 通过逐次逼近的方法拟合数据。

一般[编辑]

在非线性回归中,形式的统计模型

关联自变量 x的向量及其相关的观察到的因变量 y 。函数f在参数β的矢量的分量中是非线性的,但在其他方面是任意的。例如,酶动力学的米-门二氏动力学模型有两个参数和一个独立变量,由f相关: [a]

此函数是非线性的,因为它不能表示为两个 线性组合

系统误差可能存在于自变量中,但其处理不在回归分析的范围内。 如果自变量不是无差错的,那么这是一个变量误差模型 ,也在此范围之外。

非线性函数的其他示例包括指数函数 , 对数函数 , 三角函数幂函数高斯函数洛伦兹曲线 。 某些函数(如指数函数或对数函数)可以进行转换,以使它们是线性的。 如此转换,可以执行标准线性回归,但必须谨慎应用。 有关详细信息,请参阅下面的线性化§Transformation 。

通常,对于最佳拟合参数,没有闭合形式表达式,如线性回归 中所示。 通常应用数值优化算法来确定最佳拟合参数。 与线性回归相比,可能存在要优化的函数的许多局部最小值 ,甚至全局最小值也可能产生偏差估计。 在实践中,结合优化算法使用参数的估计值来尝试找到平方和的全局最小值。

回归统计[编辑]

这个过程的基本假设是模型可以用线性函数近似,即一阶泰勒级数

其中 ,由此得出最小二乘估计量由下式给出 .

计算非线性回归统计量并将其用作线性回归统计量,但在公式中使用J代替X. 线性近似将偏差引入统计中。 因此,在解释从非线性模型得到的统计数据时,需要比平常更多的谨慎。

普通和加权最小二乘法[编辑]

最佳拟合曲线通常假定应该看起来平方的总和最小化残差 。 这是普通的最小二乘 (OLS)方法。 然而,在因变量不具有恒定方差的情况下,可以最小化加权平方残差的总和;看加权最小二乘法 。 理想情况下,每个权重应等于观察方差的倒数,但是在迭代加权最小二乘算法中,可以在每次迭代时重新计算权重。

线性化[编辑]

转型[编辑]

通过模型公式的适当变换,可以将一些非线性回归问题移动到线性域。

例如,考虑非线性回归问题

带有参数ab以及乘法误差项U.如果我们采用双方的对数,那就变成了

其中u = ln( U ),建议通过x上的ln( y )的线性回归估计未知参数,该计算不需要迭代优化。 但是,使用非线性变换需要谨慎。 数据值的影响将发生变化,模型的误差结构和任何推论结果的解释也将发生变化。 这些可能不是期望的效果。 另一方面,取决于最大误差源是什么,非线性变换可以以高斯方式分布误差,因此必须通过建模考虑来选择执行非线性变换。

对于米-门二氏动力学 ,线性双倒数图

1 / v对1 / [ S ]已被大量使用。 但是,由于它对数据错误非常敏感,并且强烈偏向于将数据拟合到自变量[ S ]的特定范围内,因此强烈建议不要使用它。

对于属于指数族的误差分布,可以使用链接函数来变换广义线性模型框架下的参数。

分割[编辑]

芥菜和土壤盐分的产量

独立解释变量 (比如X)可以分成类或段,并且可以对每个段执行线性回归 。 具有置信度分析的分段回归可以产生依赖响应变量 (假设Y)在各个段中表现不同的结果。 [1]

该图显示土壤盐度 (X)最初对芥菜的作物产量 (Y)没有影响,直到临界 值( 断点 ),之后产量受到负面影响。 [2]

参见[编辑]

  1. ^ RJOosterbaan,1994,频率和回归分析。在:HPRitzema(ed。),Drainage Principles and Applications,Publ。 16,pp.175-224,国际土地复垦与改良研究所(ILRI),荷兰瓦赫宁根。
  2. ^ RJOosterbaan,2002年。农民田间的排水研究:数据分析。国际土地复垦与改良研究所(ILRI)项目“液体黄金”的一部分,荷兰瓦赫宁根。以PDF格式下载 : [1] 。这个数字是用SegReg程序制作的,可以从[2]免费下载。

脚注[编辑]

  1. ^ This model can also be expressed in the conventional biological notation:

拓展阅读[编辑]

  • Bethea, R. M.; Duran, B. S.; Boullion, T. L. Statistical Methods for Engineers and Scientists. New York: Marcel Dekker. 1985. ISBN 0-8247-7227-X. 
  • Meade, N.; Islam, T. Prediction Intervals for Growth Curve Forecasts. Journal of Forecasting. 1995, 14 (5): 413–430. doi:10.1002/for.3980140502. 
  • Schittkowski, K. Data Fitting in Dynamical Systems. Boston: Kluwer. 2002. ISBN 1402010796. 
  • Seber, G. A. F.; Wild, C. J. Nonlinear Regression. New York: John Wiley and Sons. 1989. ISBN 0471617601.