本页使用了标题或全文手工转换

置信区间

维基百科,自由的百科全书
跳到导航 跳到搜索

统计学中,一个概率样本置信区间英语:Confidence intervalCI),是对产生这个样本的总体参数分布Parametric Distribution)中的某一个未知参数值,以区间形式给出的估计。相对于点估计Point Estimation)用一个样本统计量来估计参数值,置信区间还蕴含了估计的精确度的信息。在现代机器学习中越来越常用的置信集合Confidence Set)概念是置信区间在多维分析的推广[1]

置信区间在频率学派中间使用,其在贝叶斯统计中的对应概念是可信区间英语Credible intervalCredible Interval)。两者建立在不同的概念基础上的,贝叶斯统计将分布的位置参数视为随机变量,并对给定观测到的数据之后未知参数的后验分布进行描述,故无论对随机样本还是已观测数据,构造出来的可信区间,其可信水平都一个合法的概率[2];而置信区间的置信水平,只在考虑随机样本时可以被理解为一个概率。

定义[编辑]

对随机样本的定义

定义置信区间最清晰的方式是从一个随机样本出发。考虑一个一维随机变量服从分布,又假设的参数之一。假设我们的数据采集计划将要独立地抽样次,得到一个随机样本,注意这里所有的都是随机的,我们是在讨论一个尚未被观测的数据集。如果存在统计量(统计量定义为样本的一个函数,且不得依赖于任何未知参数)满足使得:

则称为一个用于估计参数置信区间,其中的称为置信水平

对观测到的数据的定义

接续随机样本版本的定义,现在,对于随机变量的一个已经观测到的样本,注意这里用小写x表记的都是已经观测到的数字,没有随机性了,定义基于数据的置信区间为:

注意,置信区间可以是单边或者双边的,单边的置信区间中设定或者,具体前者还是后者取决于所构造的置信区间的方向。

初学者常犯一个概念性错误,是将基于观测到的数据所构造的置信区间的置信水平,误认为是它包含未知参数的真实值的概率。正确的理解是:置信水平只有在描述这个构造置信区间的过程(或称方法)的意义下才能被视为一个概率。一个基于已经观测到的数据所构造出来的置信区间,其两个端点已经不再具有随机性,因此,其包含未知参数的真实值的概率是0或者1,但我们不能知道是前者还是后者[3]

例子[编辑]

例1:正态分布,已知总体方差

水平的正态置信区间为:

(双边)
(单边)
(单边)

以下为方便起见,只列出双边置信区间的例子,且区间中用""进行简记:

例2:正态分布,未知总体方差

水平的双边正态置信区间为:

例3:两个独立正态样本,样本大小为,估计总体均值之差,假设总体方差未知但相等:(如果未知且不等就要应用Welch公式英语Welch's t-test来确定t分布的自由度)

水平的双边正态置信区间为:

,其中分别表示的样本标准差。

构造法[编辑]

一般来说,置信区间的构造需要先找到一个枢轴变量Pivotal quantity,或称Pivot),其表达式依赖于样本以及带估计的未知参数(但不能依赖于总体的其它未知参数),其分布不依赖于任何未知参数。

下面以上述例2为例,说明如何利用枢轴变量构造置信区间。对于一个正态分布的随机样本,可以证明(此证明对初学者并不容易)如下统计量互相独立

它们的分布是:

所以根据t分布的定义,有

于是反解如下等式左边括号中的不等式

就得到了例2中双边置信区间的表达式。

与参数检验的联系[编辑]

有时,置信区间可以用来进行参数检验。例如在上面的例1中构造的双边水平置信区间,可以用来检验具有相应的显著水平为双边对立假设,具体地说是如下检验: 正态分布总体,知道总体方差显著水平下检验:

vs

检验方法是:当且仅当相应的水平置信区间不包含时拒绝零假设

例1中构造的双边水平置信区间也可以用来检验如下两个显著水平为单边对立假设:

vs

vs

检验方法是完全类似的,比如对于上述第一个单边检验,当且仅当双边置信区间的左端点大于时拒绝零假设。

参考文献[编辑]

  1. ^ Brittany Terese Fasy; Fabrizio Lecci; Alessandro Rinaldo; Larry Wasserman; Sivaraman Balakrishnan; Aarti Singh. Confidence sets for persistence diagrams. The Annals of Statistics. 2014, 42 (6): 2301–2339. 
  2. ^ Box, George EP; Tiao, George C. Bayesian inference in statistical analysis. John Wiley & Sons. 2011. 
  3. ^ Moore, D; McCabe, George P; Craig, B. Introduction to the Practice of Statistics. San Francisco, CA: Freeman. 2012. 

参考书目[编辑]