跳转到内容

插入排序

本页使用了标题或全文手工转换
维基百科,自由的百科全书

这是插入排序当前版本,由A2569875留言 | 贡献编辑于2022年10月25日 (二) 03:22 概述。这个网址是本页该版本的固定链接。

(差异) ←上一修订 | 最后版本 (差异) | 下一修订→ (差异)
插入排序
使用插入排序为一列数字进行排序的过程
概况
類別排序算法
資料結構数组
复杂度
平均時間複雜度
最坏时间复杂度
最优时间复杂度
空間複雜度总共 ,需要辅助空间
最佳解No
相关变量的定义
使用插入排序为一列数字进行排序的过程

插入排序(英語:Insertion Sort)是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

記載

[编辑]

最早擁有排序概念的機器出現在1901至1904年間由赫爾曼·何樂禮發明出使用基數排序法的分類機,此機器系統包括打孔,制表等功能,1908年分類機第一次應用於人口普查,並且在兩年內完成了所有的普查數據和歸檔。 赫爾曼·何樂禮在1896年創立的分類機公司的前身,為電腦製表記錄公司(CTR)。他在電腦製表記錄公司曾擔任顧問工程師,直到1921年退休,而電腦製表記錄公司在1924年正式改名為IBM

概述

[编辑]

Insertion Sort 和打撲克牌時,從牌桌上逐一拿起撲克牌,在手上排序的過程相同。

舉例:

輸入: {5 2 4 6 1 3}。

首先拿起第一張牌, 手上有 {5}。

拿起第二張牌 2, 把 2 insert 到手上的牌 {5}, 得到 {2 5}。

拿起第三張牌 4, 把 4 insert 到手上的牌 {2 5}, 得到 {2 4 5}。

以此類推。

算法

[编辑]

一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:

  1. 从第一个元素开始,该元素可以认为已经被排序
  2. 取出下一个元素,在已经排序的元素序列中从后向前扫描
  3. 如果该元素(已排序)大于新元素,将该元素移到下一位置
  4. 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
  5. 将新元素插入到该位置后
  6. 重复步骤2~5

範例程式碼

[编辑]

此范例程序以C语言实现。[1]

void insertion_sort(int arr[], int len){
        int i,j,key;
        for (i=1;i!=len;++i){
                key = arr[i];
                j=i-1;
                while((j>=0) && (arr[j]>key)) {
                        arr[j+1] = arr[j];
                        j--;
                }
                arr[j+1] = key;
        }
}

此范例程序以Objective C实现。[1]

- (NSMutableArray *)insertionSort:(NSArray *)array {
    NSMutableArray *sortArray = [array mutableCopy];
    NSNumber *key = @(0);
    int j = 0;
    for (int i = 1; i < sortArray.count; i++) {
        key = array[i];
        j = i - 1;
        while ((j >= 0) && [sortArray[j] integerValue] > [key integerValue]) {
            sortArray[j + 1] = sortArray[j];
            j --;
        }
        sortArray[j + 1] = key;
    }
    return sortArray;
}
# Julia Sample : InsertSort
function InsertSort(A)
  for i=2:length(A)
    key = A[i]
    j=i-1
    while (j>=1)&&(A[j]>key)
      A[j+1]=A[j]
      j-=1
    end
    A[j+1]=key
  end
  return A
end

# Main Code
A = [16,586,1,31,354,43,3]
println(A)               # Original Array
println(InsertSort(A))   # Insert Sort Array

算法复杂度

[编辑]

如果目标是把n个元素的序列升序排列,那么采用插入排序存在最好情况和最坏情况。最好情况就是,序列已经是升序排列了,在这种情况下,需要进行的比较操作需次即可。最坏情况就是,序列是降序排列,那么此时需要进行的比较共有次。插入排序的赋值操作是比较操作的次数减去次,(因为次循环中,每一次循环的比较都比赋值多一个,多在最后那一次比较并不带来赋值)。平均来说插入排序算法复杂度为。因而,插入排序不适合对于数据量比较大的排序应用。但是,如果需要排序的数据量很小,例如,量级小于千;或者若已知輸入元素大致上按照順序排列,那么插入排序还是一个不错的选择。 插入排序在工业级库中也有着广泛的应用,在STL的sort算法和stdlib的qsort算法中,都将插入排序作为快速排序的补充,用于少量元素的排序(通常为8个或以下)。

参考文献

[编辑]
  1. ^ 1.0 1.1 Cormen, Thomas H. 英语Thomas H. Cormen; Leiserson, Charles E. 英语Charles E. Leiserson; Rivest, Ronald L.; Stein, Clifford. Section 2.1: Insertion sort. Introduction to Algorithms 3rd. MIT Press and McGraw-Hill. 2009: 16–18 [1990]. ISBN 0-262-03384-4. .

延伸閱讀

[编辑]