斯奎斯数
外观
在数论中,斯奎斯数(英语:Skewes' number)是指南非数学家斯坦利·斯奎斯(Stanley Skewes)用以表示满足下式之最小自然数x的上界的极大数字。
,其中表示素数计数函数,则表示对数积分。经过数学家对这一上界的不断改进,目前发现在附近有满足上式的自然数,不过仍不清楚这是否是最小的斯奎斯数。
大小
[编辑]约翰·恩瑟·李特尔伍德于1914年证明确实存在斯奎斯数,而且还进一步证明了和两个函数会交叉无数次,也就是有无穷个交叉点。然而不管代入什么数字,都小于,因此,可以知道x一定是比人们所能计算的数字都来得大的。
斯奎斯于1933年证明了其中一个上界(需要黎曼假设),又被称作第一斯奎斯数:
- (左为准确值,右为近似值)
斯奎斯又于1955年证明了另外一个上界(不需要黎曼假设),又被称作第二斯奎斯数:
- (左为准确值,右为近似值)
斯奎斯给出了具体的上界,以表明李特尔伍德说的斯奎斯数究竟有多大。虽然斯奎斯数比其他日常生活及数学证明中出现的大多数数字都来得大,但这个数仍然远远小于葛立恒数。
参见
[编辑]参考文献
[编辑]- Bays, C.; Hudson, R. H., A new bound for the smallest x with π(x) > li(x) (PDF), Mathematics of Computation, 2000, 69 (231): 1285–1296 [2012-09-09], MR 1752093, (原始内容存档 (PDF)于2008-09-11)
- Brent, R. P., Irregularities in the distribution of primes and twin primes, Mathematics of Computation, 1975, 29 (129): 43–56, JSTOR 2005460, MR 0369287, doi:10.2307/2005460
- Chao, Kuok Fai; Plymen, Roger, A new bound for the smallest x with π(x) > li(x), International Journal of Number Theory, 2005, 6 (03): 681–690, MR 2652902, arXiv:math/0509312 , doi:10.1142/S1793042110003125
- Kotnik, T., The prime-counting function and its analytic approximations, Advances in Computational Mathematics, 2008, 29 (1): 55–70, doi:10.1007/s10444-007-9039-2
- Lehman, R. Sherman, On the difference π(x) − li(x), Acta Arithmetica, 1966, 11: 397–410, MR 0202686
- Littlewood, J. E., Sur la distribution des nombres premiers, Comptes Rendus, 1914, 158: 1869–1872
- Skewes, S., On the difference π(x) − Li(x), Journal of the London Mathematical Society, 1933, 8: 277–283
- Skewes, S., On the difference π(x) − Li(x) (II), Proceedings of the London Mathematical Society, 1955, 5: 48–70, MR 0067145
- te Riele, H. J. J., On the sign of the difference π(x) − Li(x), Mathematics of Computation, 1987, 48 (177): 323–328, JSTOR 2007893, MR 0866118
- Rosser, J. B.; Schoenfeld, L., Approximate formulas for some functions of prime numbers, Illinois Journal of Mathematics, 1962, 6: 64–94, MR 0137689
- Saouter, Yannick; Demichel, Patrick, A sharp region where π(x) − li(x) is positive, Mathematics of Computation, 2010, 79 (272): 2395–2405, MR 2684372, doi:10.1090/S0025-5718-10-02351-3
- Zegowitz, Stefanie, On the positive region of : 69 pp., 2010
- Rubinstein, M.; Sarnak, P., Chebyshev's bias, Experimental Mathematics, 1994, 3 (3): 173–197, MR 1329368
- Wintner, A., On the distribution function of the remainder term of the prime number theorem, American Journal of Mathematics (The Johns Hopkins University Press), 1941, 63 (2): 233–248, JSTOR 2371519, MR 0004255, doi:10.2307/2371519