跳转到内容

星簇2号

维基百科,自由的百科全书
星簇 II号卫星
星簇2号卫星群
星簇2号卫星群艺术想象图
任务类型磁层研究
运营方欧洲空间局美国宇航局合作
国际卫星标识符FM6 (萨尔萨): 2000-041A
FM7 (桑巴): 2000-041B
FM5 (伦巴): 2000-045A
FM8 (探戈): 2000-045B
卫星目录序号FM6 (萨尔萨): 26410
FM7 (桑巴): 26411
FM5 (伦巴): 26463
FM8 (探戈): 26464
网站http://sci.esa.int/cluster
任务时长计划: 5 年
已过去:24年1个月又29天
航天器属性
制造方空客公司 (以前的多尼尔卫星系统公司)[1]
发射质量1200(2600磅)[1]
干质量550千克(1210磅)[1]
有效载荷质量71(151磅)[1]
尺寸2.9x1.3米(9.5x4.3英尺)[1]
功率224 瓦[1]
任务开始
发射日期FM6: 2000年7月16日世界时12点39分
FM7: 2000年7月16日世界时12点39分
FM5:2000年8月9日世界时11点13分
FM8: 2000年8月9日世界时11点13分
运载火箭联盟U/弗盖特运载火箭
发射场拜科努尔航天发射场31号发射台
承包方斯塔瑞森公司
轨道参数
参照系地心轨道
轨域椭圆轨道
近地心点FM6:16118千米(10015英里)
FM7:16157千米(100395英里)
FM5: 16022千米(9956英里)
FM8: 12902千米(8017英里)
远地心点FM6:116740千米(72540英里)
FM7:116654千米(72485英里)
FM5: 116786千米(72567英里)
FM8:119952千米(74535英里)
倾角FM6: 135度
FM7: 135度
FM5: 138度
FM8: 134度
周期FM6: 3259分钟
FM7: 3257分钟
FM5: 3257分钟
FM8: 3258分钟
历元2014年3月13日世界时11点15分07秒

星簇II号(Cluster II)[2]是一项美国宇航局参与的欧洲空间局太空探测任务,目的是在近两个太阳周期内研究地球磁层。该任务由四颗相同卫星组成四面体队形飞行,以替代1996年因发射失败而被毁的原星簇卫星,四颗星簇II号卫星于2000年7月和8月在哈萨克斯坦拜科努尔分别搭乘两枚“联盟-弗雷加火箭上成对发射升空。2011年2月,星簇II号卫星庆祝了10年成功的空间探测行动。截至2020年10月,其任务已延长至2022年底[3]。2004年至2007年,中国国家航天局/欧空局双星任务与星簇II号卫星群一起运行。

任务概述

[编辑]
北黄极视角显示星簇2号卫星自2004年3月21日来一周内的飞行轨迹。网格线表示地球弓形激波(绿色外层)和磁层(蓝色内层)的平均位置。由于地球环太阳运行,在该照片中,卫星轨道似乎在旋转,太阳位于上方。

这四颗完全相同的星簇II号卫星组队环绕地球飞行,以研究太阳活动对地球空间环境的影响。该任务是太空探测史上首次能够收集有关太阳风如何与磁层相互作用并影响包括极光在内的近地空间及其大气层的三维信息。

这些卫星外形为1.3米高、直径2.9米的扁平圆柱体(查看在线三维模型 Archive.is存档,存档日期2012-07-07),质量1200千克,其中包括650千克的推进剂和71千克的仪器,以每分钟15圈的自旋速度保持稳定。发射后,圆柱体侧面覆盖的太阳能板可为仪器(47瓦)和各种设备(特别是通信)提供224的电力,剩余电能将储存在5块总容量为80安时的镉银电池中。由于高能带电粒子的损害,太阳能电池板的功率会随着任务的进行而逐渐下降,但事前已计划好其功率水平足以保障探测操作。四颗卫星都安装有一台400牛顿的主推进器和8台10牛顿的小型火箭发动机,燃料为联氨过氧化氮混合物。主引擎用于将卫星送入工作轨道上,然后调整与其他三颗卫星的距离,相距4公里到10000公里不等,机动组成各种四面体队形以研究磁层结构和边界。一旦进入轨道,卫星将展开多根天线和电缆:2根通信天线、2根5米长的仪器传感器杆、4根50米长用于电场和波实验的径向延伸电缆,卫星平台设计至少运行5年[4][5]

卫星高度椭圆轨道最初抵达约4倍地球半径(RE=6371公里)的近地点和19.6倍的远地点,每圈轨道运行时间约需57小时。卫星轨道将随着时间的推移发生改变,拱顶线逐步向南旋转,使得轨道穿过磁尾电流片的距离逐渐减小,并可对所穿越纬度的大范围白昼侧磁层顶进行采样。引力效应使近地点(和远地点)距离发生了长期变化,2011年,近地点缩减至数百公里,然后又开始上升,轨道平面已偏离了90度倾角,欧洲太空营运中心的轨道修正也将卫星绕轨周期改为了54小时,所有这些变化使得该卫星群能够探访比最初两年任务更广的一系列重要磁层区,从而扩大了任务的探测范围。

欧洲太空营运中心(ESOC)进行遥测并将来自卫星的科学数据分发到在线数据中心。位于英国卢瑟福阿普尔顿实验室的联合科学运营中心(JSOC)负责协调科学规划,并与仪器团队合作,向欧洲空间业务中心提供合并的仪器指令请求。

星簇卫星科学档案欧空局星簇和双星科学任务的长期档案。自2014年11月1日起,它是星簇任务科学数据和支持数据库的唯一公共访问点。双星数据可通过该档案公开获得。星簇卫星科学档案馆位于西班牙马德里附近的欧洲空间天文中心内欧空局所有其他科学档案馆旁。从2006年2月到2014年10月,可以通过星簇卫星科学档案页面存档备份,存于互联网档案馆)访问星簇卫星数据。

历史

[编辑]

星簇卫星任务于1982年被提交给欧空局,并于1986年与太阳和日光层观测台(SOHO)一起获得批准,这两项任务共同构成了欧洲航天局地平线2000计划的日地物理学“奠基石”任务。 尽管最初的星簇卫星于1995年完成,但由于1996年携带卫星的阿丽亚娜5型火箭爆炸,使任务被推迟四年,以重新研制新的仪器和卫星。

2000年7月16日,一枚从拜科努尔航天发射场发射的联盟-弗雷加火箭将两颗替代的星簇2号卫星(萨尔萨号和桑巴号)送入停驻轨道,在那里它们以自身动力机动到环绕期为57小时的19000×119000公里轨道。三周后的2000年8月9日,另一枚“联盟-弗雷加”火箭将其余两颗卫星(伦巴号和探戈号)送入相同的轨道。1号卫星“伦巴”也被称为凤凰卫星,因为它主要是用原任务失败后剩下的备件所制造。四颗在轨卫星经设备调试后,于2001年2月1日展开了首次科学探测。

欧洲空间局在所有欧空局成员国中举办了一场卫星征名大赛[6],来自英国的雷·科顿以伦巴探戈萨尔萨桑巴等名称赢得了比赛[7]。雷居住的市镇布里斯托尔被授予微缩版卫星模型,以表彰获奖作品以及该市与卫星的联系[8][9]。在摆放多年后,它们最终在卢瑟福·阿普尔顿实验室找到了自己归宿。

该任务原计划只持续到2003年底,现已多次延期。第一次从2004年延至2005年,第二次从2005年延至2009年6月,目前该任务已延长至2020年底[10]

科学目标

[编辑]
地球磁层示意图,太阳风从左向右吹。弓形激波(Bow shock)、偏转的太阳风粒子(Deflected solar wind particles)、射入的太阳风粒子(Incoming solar wind particles)、磁鞘(Magentsheath)、磁尾(Magentotail)、中性层(Neutral sheet)、等离子片(Plasma sheet)、极尖区(Polar cusp)、范艾伦辐射带(Van Allen radiation belt)。

以前仅靠一、两颗卫星飞行任务无法提供准确研究磁层边界所需的数据,由于组成磁层的等离子体无法用遥感技术进行观测,因此必须使用卫星进行原位测量。四颗卫星使科学家能够进行所需的三维辨时测量,以创建磁层区域之间以及磁层和太阳风间所发生的复杂等离子体相互作用的真实图像。

每颗卫星都携带了11台探测仪器,旨在研究关键等离子体区时空内的小尺度等离子体结构:太阳风弓形激波磁层顶、极地尖点、磁尾等离子层边界层以及极冠上空和极光带。

  • 弓形激波是地球和太阳之间的空间区域,在那里太阳风在绕地球偏转之前从超音速减速到亚音速。在穿越该区域时,卫星进行测量以帮助描述发生在弓激波中的作用过程,例如异常热流的起源和穿过来自太阳风的弓形激波和磁鞘传播的电磁波。
  • 弓形激波的背后是分隔地球和太阳风磁场的薄等离子体层,称为磁层顶。因太阳风压的不断变化,该边界也在不断移动。但由于太阳风和磁层内的等离子体和磁压分别应处于平衡状态,因此磁层应该是一层不可穿透的边界。然而,现已观察到等离子体从太阳风中穿过磁层顶进入磁层的现象。 星簇2号卫星的四点测量使得追踪磁层顶的运动以及阐明太阳风中等离子体的穿透机制成为可能。
  • 在北半球和南半球两个地区,地球磁场与磁层顶垂直而非相切。这些“极地尖点”允许由离子和电子组成的太阳风粒子流入磁层。星簇2号卫星将记录粒子的分布,从而可以描述外部尖点的湍流区域。
  • 被太阳风吹离太阳的地球磁场区域统称为“磁尾”,长度跨越月球的两个裂瓣构成了外磁尾,而中央等离子片则形成高度活跃的内磁尾。星簇2号卫星将监测来自电离层的粒子和太阳风,因为它们穿过了磁尾瓣。在中央等离子体片中,卫星将测定离子束的起源以及由亚磁暴引起的磁场向电流的紊乱。
  • 大气层中沉淀的带电粒子在磁极周围形成了一圈辐射光环,称为“极光带”,星簇卫星将测量该区域不同时间的瞬态粒子流及电场和磁场的变化

每颗星簇卫星上的仪器

[编辑]
星簇2号卫星上的仪器

四颗星簇2号卫星中的每颗都携带了11台相同的仪器(总质量71 公斤),其功能如下表所示。 这些仪器一方面测量电场 (E) 和磁场 (B) 的强度和方向;另一方面测量构成等离子体的电子和离子的密度与分布。


编号 缩写 仪器 测量 用途
1 ASPOC 卫星电位主动控制器 卫星静电位的调节 启用冷电子的等离子体电子和电流探测器进行测量(数电子伏特温度),否则会被卫星光电子遮蔽。
2 CIS 星簇离子谱仪 测量离子飞行时间(TOFs)和从0到40千电子伏特的能量 等离子体中离子的组成和三维分布
3 DWP 数字波处理器 协调电场和波实验仪、场波动时空分析器、宽带数据设备和高频波及电子密度探测器的操作。 最低级别,提供电信号以同步仪器采样;最高级别,通过宏命令启用更复杂的操作模式。
4 EDI 电子漂移器 探测E电场的大小和方向 E矢量,局部磁场B中的梯度。
5 EFW 电场和波实验仪 探测E电场的大小和方向 E矢量、航天器电位、电子密度和温度。
6 FGM 磁通门磁力计 测量B磁场的大小和方向 除卫星电位主动控制器外,B矢量和事件触发的所有仪器。
7 PEACE 等离子体电子和电流探测器 测量从0.0007到30千电子伏特的电子能量 等离子体中电子的三维分布
8 RAPID 自适应粒子成像探测器研究设备 测量39到406千电子伏特的电子能量;20到450电子伏特的离子能量。 等离子体中高能电子和离子的三维分布。
9 STAFF 场波动时空分析器 检测B磁场电磁波动的幅度和方向,EB”的互相关性。 小尺度电流结构特性、等离子波和湍流来源。
10 WBD 宽带数据设备 从25赫兹至577赫兹选定频段内,对电场和磁场进行高时间分辨率测量。它提供了一种独特的新功能来执行甚长基线干涉测量(VLBI)。 地球磁层及其附近的自然等离子体波(如极光千米波辐射)的特性,包括:源位置、大小和扩展。
11 WHISPER 高频波和电子密度探测器 2–8千赫范围内发射的无线电和地球等离子体波的E电场频谱图;通过有源发声器触发等离子体共振 通过三角测量定位波源位置及0.2-80厘米−3范围内的电子密度。

与中国的双星任务

[编辑]

2003年和2004年,中国国家航天局发射了双星卫星"探测1号"(TC-1)和"探测2号"(TC-2),该任务与星簇2号卫星合作,主要在磁层内进行协作测量。探测1号于2007年10月14日停止运行,探测2号则在2008年发回最后一次数据,探测2号对磁星[11][12]以及磁层物理学研究做出了贡献研究做出了贡献。探测1号检测了地球弓形激波附近的密度洞,这些密度洞可能在弓形激波的形成中发挥了作用[13][14]。此外,它还观察了中性层的振荡[15]

奖项

[编辑]

星簇团队奖

个人奖

发现和任务里程碑

[编辑]

2020年

[编辑]

2019年

[编辑]

2018年

[编辑]

2017年

[编辑]

2016年

[编辑]

2015年

[编辑]

2014年

[编辑]

2013年

[编辑]

2012年

[编辑]

2011年

[编辑]

2010年

[编辑]

2009年

[编辑]

2008年

[编辑]

2007年

[编辑]

2006年

[编辑]

2005年

[编辑]

2004年

[编辑]

2001年–2003年

[编辑]

精选刊物

[编辑]

截至2021年10月31日,所有与星簇和双星任务有关的3522篇出版物都可以在 欧空局星簇探测任务网刊物区页面存档备份,存于互联网档案馆)找到。在这些出版物中,有3029篇参考刊物、342篇论文、121篇博士论文和30篇其他类型的论文。

参考文献

[编辑]
  1. ^ 1.0 1.1 1.2 1.3 1.4 1.5 Cluster (Four Spacecraft Constellation in Concert with SOHO). ESA. [2014-03-13]. (原始内容存档于2021-12-29). 
  2. ^ Cluster II operations. European Space Agency. [29 November 2011]. (原始内容存档于2011-12-31). 
  3. ^ Extended Operations Confirmed for Science Missions. ESA. [6 July 2021]. (原始内容存档于2021-11-13). 
  4. ^ Cluster 3D Model Archive.is存档,存档日期2012-07-07, ESA
  5. ^ {{URL|example.com|可选的显示文本}}
  6. ^ European Space Agency Announces Contest to Name the Cluster Quartet (PDF). XMM-Newton Press Release (European Space Agency). 2000: 4 [2021-12-29]. Bibcode:2000xmm..pres....4.. (原始内容存档 (PDF)于2016-03-04). 
  7. ^ Bristol and Cluster – the link. European Space Agency. [2 September 2013]. (原始内容存档于2013-09-03). 
  8. ^ Cluster II – Scientific Update and Presentation of Model to the City of Bristol. SpaceRef Interactive Inc. [2021-12-29]. (原始内容存档于2013-09-03). 
  9. ^ Cluster – Presentation of model to the city of Bristol and science results overview. European Space Agency. [2021-12-29]. (原始内容存档于2013-09-03). 
  10. ^ Extended life for ESA's science missions. ESA. [14 November 2018]. (原始内容存档于2019-09-04). 
  11. ^ Schwartz, S.; et al. A γ-ray giant flare from SGR1806-20: evidence for crustal cracking via initial timescales. The Astrophysical Journal. 2005, 627 (2): L129–L132. Bibcode:2005ApJ...627L.129S. S2CID 119371524. arXiv:astro-ph/0504056可免费查阅. doi:10.1086/432374. 
  12. ^ ESA Science & Technology - Double Star and Cluster observe first evidence of crustal cracking. sci.esa.int. September 21, 2005 [2021-07-14]. (原始内容存档于2021-12-29) (美国英语). 
  13. ^ ESA Science & Technology - Cluster and Double Star discover density holes in the solar wind. sci.esa.int. June 20, 2006 [2021-07-14]. (原始内容存档于2021-12-29). 
  14. ^ Britt, Robert Roy. CNN.com - Earth surrounded by giant fizzy bubbles - Jun 20, 2006. www.cnn.com. June 20, 2006 [2021-07-14]. (原始内容存档于2021-12-29). 
  15. ^ ESA Science & Technology - Cluster and Double Star reveal the extent of neutral sheet oscillations. sci.esa.int. March 30, 2006 [2021-07-14]. (原始内容存档于2021-12-29). 
  16. ^ Lazar, M.; Pierrard, S. Characteristics of solar wind suprathermal halo electrons. Astronomy and Astrophysics. 2020, 642 (A130): A130. Bibcode:2020A&A...642A.130L. doi:10.1051/0004-6361/202038830. 
  17. ^ Hatch, S.M.; Haaland, S. Seasonal and hemispheric asymmetries of F region polar cap plasma density: Swarm and CHAMP observations. J. Geophys. Res. 2020, 125 (11): e2020JA028084. Bibcode:2020JGRA..12528084H. doi:10.1029/2020JA028084可免费查阅. 
  18. ^ Bakrania, M.R.; Rae, I.J.; Walsh, A.P. Using Dimensionality Reduction and Clustering Techniques to Classify Space Plasma Regimes. Front. Astron. Space Sci. 2020, 7 (80): 80. Bibcode:2020FrASS...7...80B. arXiv:2009.10466可免费查阅. doi:10.3389/fspas.2020.593516可免费查阅. 
  19. ^ Zhou, G.; He, H.-Q.; Wan, W. Effects of Solar Activity on Taylor Scale and Correlation Scale in Solar Wind Magnetic Fluctuations. ApJ. Lett. 2020, 899 (L32): L32. Bibcode:2020ApJ...899L..32Z. arXiv:2008.08542可免费查阅. doi:10.3847/2041-8213/abaaa9可免费查阅. 
  20. ^ Aryan, H.; Agapitov, O.V. Outer Radiation Belt Electron Lifetime Model Based on Combined Van Allen Probes and Cluster VLF Measurements. J. Geophys. Res. 2020, 125 (8): e2020JA028018. Bibcode:2020JGRA..12528018A. doi:10.1029/2020JA028018可免费查阅. 
  21. ^ Mishin, E.; Streltsov, A. Prebreakup Arc Intensification due to Short Circuiting of Mesoscale Plasma Flows Over the Plasmapause. J. Geophys. Res. 2020, 125 (5): e2019JA027666. Bibcode:2020JGRA..12527666M. doi:10.1029/2019JA027666可免费查阅. 
  22. ^ Forsyth, C.; Sergeev, V.A.; Henderson, M.G.; Nishimura, Y.; Gallardo-Lacourt, B. Physical Processes of Meso-Scale, Dynamic Auroral Forms. Space Sci. Rev. 2020, 216 (3): 46. Bibcode:2020SSRv..216...46F. doi:10.1007/s11214-020-00665-y可免费查阅. 
  23. ^ Haaland, S.; Daly, P.W.; Vilenius, E.; Dandouras, I. Suprathermal Fe in the Earth's plasma environment: Cluster RAPID observations. J. Geophys. Res. 2020, 125 (2): e2019JA027596. Bibcode:2020JGRA..12527596H. doi:10.1029/2019JA027596可免费查阅. 
  24. ^ Nakamura, T.K.M.; Stawarz, J.E.; Hasegawa, H.; Narita, Y.; Franci, L.; Narita, Y.; Nakamura, R.; Nystrom, W.D. Effects of Fluctuating Magnetic Field on the Growth of the Kelvin‐Helmholtz Instability at the Earth's Magnetopause. J. Geophys. Res. 2020, 125 (3): e2019JA027515. Bibcode:2020JGRA..12527515N. doi:10.1029/2019JA027515. 
  25. ^ Lai, H.R.; Russell, C.T.; Jia, Y.D.; Connors, M. First observations of the disruption of the Earth's foreshock wave field during magnetic clouds. Geophysical Research Letters. 2019, 46 (24): 14282–14289. doi:10.1029/2019GL085818. 
  26. ^ Turc, L.; Roberts, O.W.; Archer, M.O.; Palmroth, M.; Battarbee, M.; Brito, T.; Ganse, U.; Grandin, M.; Pfau‐Kempf, Y.; Escoubet, C.P.; Dandouras, I. First observations of the disruption of the Earth's foreshock wave field during magnetic clouds (PDF). Geophysical Research Letters. 2019, 46 (22): 1612–1624 [2021-12-29]. Bibcode:2019GeoRL..4612644T. doi:10.1029/2019GL084437. hdl:10138/315030可免费查阅. (原始内容存档 (PDF)于2021-12-29). 
  27. ^ Duan, S.; Dai, L.; Wang, C.; Cai, C.; He, Z.; Zhang, Y.; Rème, H.; Dandouras, I. Conjunction Observations of Energetic Oxygen Ions O+ Accumulated in the Sequential Flux Ropes in the High‐Altitude Cusp (PDF). Journal of Geophysical Research: Space Physics. 2019, 124 (10): 7912–7922 [2021-12-29]. Bibcode:2019JGRA..124.7912D. doi:10.1029/2019JA026989. (原始内容存档 (PDF)于2021-12-29). 
  28. ^ Connor, H.K.; Carter, J.A. Exospheric neutral hydrogen density at the nominal 10 RE subsolar point deduced from XMM-Newton X-ray observations. Journal of Geophysical Research: Space Physics. 2019, 124 (3): 1612–1624. Bibcode:2019JGRA..124.1612C. doi:10.1029/2018JA026187可免费查阅. 
  29. ^ Wang, J.; et al. Asymmetric transport of the Earth's polar outflows by the interplanetary magnetic field. Astrophysical Journal Letters. 2019, 881 (2): L34. Bibcode:2019ApJ...881L..34W. doi:10.3847/2041-8213/ab385d. 
  30. ^ Chen, G.; Fu, H.S.; Zhang, Y.; Li, X.; Ge, Y.S.; Du, A.M.; Liu, C.M.; Xu, Y. Energetic electron acceleration in unconfined reconnection jets. The Astrophysical Journal. 2019, 881 (1): L8. Bibcode:2019ApJ...881L...8C. doi:10.3847/2041-8213/ab3041可免费查阅. 
  31. ^ Kieokaew, R.; Foullon, C. Kelvin‐Helmholtz waves magnetic curvature and vorticity: Four‐spacecraft Cluster observations. Journal of Geophysical Research: Space Physics. 2019, 124 (5): 3347–3359. Bibcode:2019JGRA..124.3347K. doi:10.1029/2019JA026484可免费查阅. 
  32. ^ Damiano, P.A.; Chaston, C.C.; Hull, A.J.; Johnson, J.R. Electron distributions in kinetic scale field line resonances: A comparison of simulations and observations. Geophysical Research Letters. 2018, 45 (12): 5826–5835. Bibcode:2018GeoRL..45.5826D. OSTI 1468802. doi:10.1029/2018GL077748可免费查阅. 
  33. ^ Dimmock, A.P.; et al. Direct evidence of nonstationary collisionless shocks in space plasmas. Science Advances. 2019, 5 (2): eaau9926. Bibcode:2019SciA....5.9926D. PMC 6392793可免费查阅. PMID 30820454. doi:10.1126/sciadv.aau9926. 
  34. ^ Kruparova, O.; et al. Statistical survey of the terrestrial bow shock observed by the Cluster spacecraft (PDF). J. Geophysical. Res. 2019, 124 (3): 1539–1547 [2021-12-29]. Bibcode:2019JGRA..124.1539K. doi:10.1029/2018JA026272. hdl:11603/12953可免费查阅. (原始内容存档 (PDF)于2021-12-29). 
  35. ^ Fu, H.S.; Xu, Y.; Vaivads, A.; Khotyaintsev, Y.V. Super-efficient electron acceleration by an isolated magnetic reconnection. Astrophysical Journal Letters. 2019, 870 (L22): L22. Bibcode:2019ApJ...870L..22F. doi:10.3847/2041-8213/aafa75可免费查阅. 
  36. ^ Slapak, R.; Nilsson, H. The Oxygen Ion Circulation in The Outer Terrestrial Magnetosphere and Its Dependence on Geomagnetic Activity. Geophys. Res. Lett. 2018, 45 (23): 12,669– 12,676. Bibcode:2018GeoRL..4512669S. doi:10.1029/2018GL079816可免费查阅. 
  37. ^ Schillings, A.; Nilsson, H.; Slapak, R.; Wintoft, P.; Yamauchi, M.; Wik, M.; Dandouras, I.; Carr, C.M. O+ escape during the extreme space weather event of 4–10 September 2017. Space Weather. 2018, 16 (4): 1363–1376. Bibcode:2018SpWea..16.1363S. doi:10.1029/2018sw001881可免费查阅. 
  38. ^ Liebert, E.; Nabert, C.; Glassmeier, K.-H. Statistical survey of day-side magnetospheric current flow using Cluster observations: bow shock. Annales Geophysicae. 2018, 36 (4): 1073–1080. Bibcode:2018AnGeo..36.1073L. doi:10.5194/angeo-36-1073-2018可免费查阅. 
  39. ^ Liu, C.M.; H. S. Fu; D. Cao; Y. Xu; A. Divin. Detection of magnetic nulls around reconnection fronts. The Astrophysical Journal. 2018, 860 (2): 128. Bibcode:2018ApJ...860..128L. doi:10.3847/1538-4357/aac496. 
  40. ^ Coxon, J.C.; Freeman, M.P.; Jackman, C.M.; Forsyth, C.; Rae, I.J.; Fear, R.C. Tailward propagation of magnetic energy density variations with respect to substorm onset times. Journal of Geophysical Research: Space Physics. 2018, 123 (6): 4741–4754. Bibcode:2018JGRA..123.4741C. doi:10.1029/2017JA025147可免费查阅. 
  41. ^ Masson, A.; Nykyri, K. Kelvin–Helmholtz Instability: lessons learned and ways forward (PDF). Space Science Reviews. 2018, 214 (4): 71 [2021-12-29]. Bibcode:2018SSRv..214...71M. S2CID 125646793. doi:10.1007/s11214-018-0505-6可免费查阅. (原始内容存档 (PDF)于2022-01-21). 
  42. ^ Roberts, O. W.; Narita, Y.; Escoubet, C.-P. Three-dimensional density and compressible magnetic structure in solar wind turbulence. Annales Geophysicae. 2018, 36 (2): 527–539. Bibcode:2018AnGeo..36..527R. doi:10.5194/angeo-36-527-2018可免费查阅. 
  43. ^ Hadid, L. Z.; Sahraoui, F.; Galtier, S.; Huang, S. Y. Compressible Magnetohydrodynamic Turbulence in the Earth's Magnetosheath: Estimation of the Energy Cascade Rate Using in situ Spacecraft Data. Physical Review Letters. January 2018, 120 (5): 055102. Bibcode:2018PhRvL.120e5102H. PMID 29481187. S2CID 3676068. arXiv:1710.04691可免费查阅. doi:10.1103/PhysRevLett.120.055102. 
  44. ^ Grigorenko, E.E.; Dubyagin, S.; Malykhin, A.; Khotyaintsev, Y.V.; Kronberg, E.A.; Lavraud, B.; Ganushkina, N.Yu. Intense current structures observed at electron kinetic Scales in the near‐Earth magnetotail during dipolarization and substorm current wedge formation. Geophysical Research Letters. 2018, 45 (2): 602–611 [2021-12-29]. Bibcode:2018GeoRL..45..602G. doi:10.1002/2017GL076303. hdl:2027.42/142547可免费查阅. (原始内容存档于2019-10-31). 
  45. ^ Andreeva V. A.; Tsyganenko N. A. Empirical Modeling of the Quiet and Storm Time Geosynchronous Magnetic Field. Space Weather. 2017, 16 (1): 16–36. Bibcode:2018SpWea..16...16A. doi:10.1002/2017SW001684可免费查阅. 
  46. ^ Roberts, O.W.; Y. Narita; C.P. Escoubet. Direct measurement of anisotropic and asymmetric wave vector Spectrum in ion-scale solar wind turbulence. The Astrophysical Journal. 2017, 851 (1): L11. Bibcode:2017ApJ...851L..11R. doi:10.3847/2041-8213/aa9bf3可免费查阅. 
  47. ^ Perrone, D.; O. Alexandrova; O.W. Roberts; S. Lion; C. Lacombe; A. Walsh; M. Maksimovic; I. Zouganelis. Coherent structures at ion scales in the fast solar wind: Cluster observations. The Astrophysical Journal. 2017, 849 (1): 49. Bibcode:2017ApJ...849...49P. S2CID 119050245. arXiv:1709.09644可免费查阅. doi:10.3847/1538-4357/aa9022. 
  48. ^ Perrone, D.; O. Alexandrova; O.W. Roberts; S. Lion; C. Lacombe; A. Walsh; M. Maksimovic; I. Zouganelis. Near-Earth plasma sheet boundary dynamics during substorm dipolarization. Earth, Planets and Space. 2017, 69 (1): 129. Bibcode:2017EP&S...69..129N. PMC 6961498可免费查阅. PMID 32009832. doi:10.1186/s40623-017-0707-2. 
  49. ^ Yushkov, E.; A. Petrukovich; A. Artemyev; R. Nakamura. Relationship between electron field-aligned anisotropy and dawn-dusk magnetic field: nine years of Cluster observations in the Earth magnetotail. Journal of Geophysical Research: Space Physics. 2017, 122 (9): 9294–9305. Bibcode:2017JGRA..122.9294Y. doi:10.1002/2016JA023739. 
  50. ^ Giagkiozis, S.; S. N. Walker; S. A. Pope; G. Collinson. Validation of single spacecraft methods for collisionless shock velocity estimation. Journal of Geophysical Research: Space Physics. 2017, 122 (8): 8632–8641. Bibcode:2017JGRA..122.8632G. doi:10.1002/2017JA024502可免费查阅. 
  51. ^ Zhao, L.L.; Zhang, H.; Zong, Q.G. Global ULF waves generated by a hot flow anomaly. Geophysical Research Letters. 2017, 44 (11): 5283–5291. Bibcode:2017GeoRL..44.5283Z. doi:10.1002/2017GL073249可免费查阅. 
  52. ^ Fu, H.S.; A. Vaivads; Y.V. Khotyaintsev; M. André; J. B. Cao; V. Olshevsky; J. P. Eastwood; A. Retinò. Intermittent energy dissipation by turbulent reconnection. Geophysical Research Letters. 2017, 44 (1): 37–43. Bibcode:2017GeoRL..44...37F. doi:10.1002/2016GL071787. hdl:10044/1/44378可免费查阅. 
  53. ^ Turc, L.; D. Fontaine; C.P. Escoubet; E.K.J. Kilpua; A.P. Dimmock. Statistical study of the alteration of the magnetic structure of magnetic clouds in the Earth's magnetosheath. Journal of Geophysical Research: Space Physics. 2017, 122 (3): 2956–2972 [2021-12-29]. Bibcode:2017JGRA..122.2956T. doi:10.1002/2016JA023654. hdl:10138/224163可免费查阅. (原始内容存档于2021-12-29). 
  54. ^ Vines, S.K.; S.A. Fuselier; S.M. Petrinec; K.J. Trattner; R.C. Allen. Occurrence frequency and location of magnetic islands at the dayside magnetopause. Journal of Geophysical Research: Space Physics. 2017, 122 (4): 4138–4155. Bibcode:2017JGRA..122.4138V. doi:10.1002/2016JA023524可免费查阅. 
  55. ^ Case, N. A.; A. Grocott; S. E. Milan; T. Nagai; J. P. Reistad. An analysis of magnetic reconnection events and their associated auroral enhancements. Journal of Geophysical Research: Space Physics. 2017, 122 (2): 2922–2935. Bibcode:2017JGRA..122.2922C. doi:10.1002/2016JA023586可免费查阅. 
  56. ^ Lugaz, N.; C.J. Farrugia; C.-L. Huang; R.M. Winslow; H.E. Spence; N.A. Schwadron. Earth's magnetosphere and outer radiation belt under sub-Alfvénic solar wind. Nature Communications. 2016, 7: 13001. Bibcode:2016NatCo...713001L. PMC 5063966可免费查阅. PMID 27694887. doi:10.1038/ncomms13001. 
  57. ^ Moore, T.W.; Nykyri, K.; Dimmock, A.P. Cross-scale energy transport in space plasmas. Nature Physics. 2016, 12 (12): 1164–1169. Bibcode:2016NatPh..12.1164M. doi:10.1038/nphys3869. 
  58. ^ Schmid, D.; R. Nakamura; M. Volwerk; F. Plaschke; Y. Narita; W. Baumjohann; et al. A comparative study of dipolarization fronts at MMS and Cluster. Geophysical Research Letters. 2016, 43 (12): 6012–6019. Bibcode:2016GeoRL..43.6012S. PMC 4949994可免费查阅. PMID 27478286. doi:10.1002/2016GL069520. 
  59. ^ Parks, G.K.; E. Lee; S.Y. Fu; H.E. Kim; Y.Q. Ma; Z.W. Yang; Y. Liu; N. Lin; J. Hong; P. Canu. Transport of solar wind H+ and He++ ions across Earth's bow shock. The Astrophysical Journal. 2016, 825 (2): L27. Bibcode:2016ApJ...825L..27P. doi:10.3847/2041-8205/825/2/L27可免费查阅. 
  60. ^ 60.0 60.1 Lee, S.H.; H. Zhang; Q.-G. Zong; A. Otto; H. Rème; E. Liebert. A statistical study of plasmaspheric plumes and ionospheric outflows observed at the dayside magnetopause. Journal of Geophysical Research: Space Physics. 2016, 121 (1): 492–506. Bibcode:2016JGRA..121..492L. doi:10.1002/2015JA021540可免费查阅. 
  61. ^ 61.0 61.1 Zhang, B.; O.J. Brambles; W. Lotko; J.E. Ouellette; J.G. Lyon. The role of ionospheric O+ outflow in the generation of earthward propagating plasmoids. Journal of Geophysical Research: Space Physics. 2016, 121 (2): 1425–1435. Bibcode:2016JGRA..121.1425Z. doi:10.1002/2015JA021667可免费查阅. 
  62. ^ Yao, Z.; A.N. Fazakerley; A. Varsani; I.J. Rae; C.J. Owen; et al. Substructures within a dipolarization front revealed by high-temporal resolution Cluster observations. Journal of Geophysical Research: Space Physics. 2016, 121 (6): 5185–5202. Bibcode:2016JGRA..121.5185Y. doi:10.1002/2015JA022238可免费查阅. 
  63. ^ L. Turc; C.P. Escoubet; D. Fontaine; E.K.J. Kilpua; S. Enestam. Cone angle control of the interaction of magnetic clouds with the Earth's bow shock. Geophysical Research Letters. 2016, 43 (10): 4781–4789 [2021-12-29]. Bibcode:2016GeoRL..43.4781T. doi:10.1002/2016GL068818. (原始内容存档于2021-12-29). 
  64. ^ Cheng, Z.W.; J.C. Zhang; J.K. Shi; L.M. Kistler; M. Dunlop; I. Dandouras; A. Fazakerley. The particle carriers of field‐aligned currents in the Earth's magnetotail during a substorm. Journal of Geophysical Research: Space Physics. 2016, 121 (4): 3058–3068. Bibcode:2016JGRA..121.3058C. doi:10.1002/2015JA022071可免费查阅. 
  65. ^ Wang, R.; Q. Lu; R. Nakamura; C. Huang; A. Du; F. Guo; W. Teh; M. Wu; S. Lu; S. Wang. Coalescence of magnetic flux ropes in the ion diffusion region of magnetic reconnection. Nature Physics. 2015, 12 (3): 263–267. Bibcode:2016NatPh..12..263W. doi:10.1038/nphys3578可免费查阅. 
  66. ^ Décréau, P.M.E.; Aoutou, S.; Denazelle, A.; Galkina, I.; Rauch, J.-L.; Vallières, X.; Canu, P.; Rochel Grimald, S.; El-Lemdani Mazouz, F.; Darrouzet, F. Wide-banded NTC radiation: local to remote observations by the four Cluster satellites. Annales Geophysicae. 2015, 33 (10): 1285–1300. Bibcode:2015AnGeo..33.1285D. doi:10.5194/angeo-33-1285-2015可免费查阅. 
  67. ^ Eriksson, E.; A. Vaivads; Y. V. Khotyaintsev; V. M. Khotyayintsev; M. André. Statistics and accuracy of magnetic null identification in multispacecraft data. Geophysical Research Letters. 2015, 42 (17): 6883–6889. Bibcode:2015GeoRL..42.6883E. doi:10.1002/2015GL064959可免费查阅. 
  68. ^ Cai, D.; A. Esmaeili; B. Lembège; K.‐I. Nishikawa. Cusp dynamics under northward IMF using three‐dimensional global particle‐in‐cell simulations (PDF). Journal of Geophysical Research: Space Physics. 2015, 120 (10): 8368–8386 [2021-12-29]. Bibcode:2015JGRA..120.8368C. doi:10.1002/2015JA021230可免费查阅. (原始内容存档 (PDF)于2021-12-29). 
  69. ^ Balikhin, M.A.; Y.Y. Shprits; S.N. Walker; L. Chen; N. Cornilleau-Wehrlin; I. Dandouras; O. Santolik; C. Carr; K.H. Yearby; B. Weiss. Observations of Discrete Harmonics Emerging From Equatorial Noise. Nature Communications. 2015, 6: 7703. Bibcode:2015NatCo...6.7703B. PMC 4510698可免费查阅. PMID 26169360. doi:10.1038/ncomms8703. 
  70. ^ Dunlop, M.W.; J.-Y. Yang; Y.-Y. Yang; C. Xiong; H. Lühr; Y. V. Bogdanova; C. Shen; N. Olsen; Q.-H. Zhang; J.-B. Cao; H.-S. Fu; W.-L. Liu; C. M. Carr; P. Ritter; A. Masson; R. Haagmans. Simultaneous field-aligned currents at Swarm and Cluster satellites. Geophysical Research Letters. 2015, 42 (10): 3683–3691. Bibcode:2015GeoRL..42.3683D. doi:10.1002/2015GL063738可免费查阅. 
  71. ^ Russell, A. J. B.; Karlsson, T.; Wright, A. N. Magnetospheric signatures of ionospheric density cavities observed by Cluster (PDF). Journal of Geophysical Research: Space Physics. 2015, 120 (3): 1876–1887 [2021-12-29]. Bibcode:2015JGRA..120.1876R. doi:10.1002/2014JA020937可免费查阅. (原始内容存档 (PDF)于2021-12-29). 
  72. ^ Russell, A.J.B.; T. Karlsson; A.N. Wright. Magnetospheric signatures of ionospheric density cavities observed by Cluster (PDF). Journal of Geophysical Research: Space Physics. 2015, 120 (3): 1876–1887 [2021-12-29]. Bibcode:2015JGRA..120.1876R. doi:10.1002/2014JA020937可免费查阅. (原始内容存档 (PDF)于2021-12-29). 
  73. ^ Maes, L.; Maggiolo, R.; De Keyser, J.; Dandouras, I.; Fear, R.C.; Fontaine, D.; Haaland, S. Solar illumination control of ionospheric outflow above polar cap arcs. Geophysical Research Letters. 2015, 42 (5): 1304–1311. Bibcode:2015GeoRL..42.1304M. doi:10.1002/2014GL062972可免费查阅. 
  74. ^ Fear, R.C.; S.E. Milan; R. Maggiolo; A.N. Fazakerley; I. Dandouras; S.B. Mende. Direct observation of closed magnetic flux trapped in the high latitude magnetosphere (PDF). Science. 2014, 346 (6216): 1506–1510 [2021-12-29]. Bibcode:2014Sci...346.1506F. PMID 25525244. S2CID 21017912. doi:10.1126/science.1257377. (原始内容存档 (PDF)于2017-07-30). 
  75. ^ Zhongwei, Y.; Y.D. Liu; G.K. Parks; P. Wu; C. Huang; R. Shi; R. Wang; H. Hu. Full particle electromagnetic simulations of entropy generation across a collisionless shock. The Astrophysical Journal. 2014, 793 (1): L11. Bibcode:2014ApJ...793L..11Y. doi:10.1088/2041-8205/793/1/L11可免费查阅. 
  76. ^ Kozyra; et al. Solar filament impact on 21 January 2005: Geospace consequences. Journal of Geophysical Research: Space Physics. 2014, 119 (7): 2169–9402. Bibcode:2014JGRA..119.5401K. doi:10.1002/2013JA019748. hdl:2027.42/108315可免费查阅. 
  77. ^ Walsh, A. P.; Haaland, S.; Forsyth, C.; Keesee, A. M.; Kissinger, J.; Li, K.; Runov, A.; Soucek, J.; Walsh, B. M.; Wing, S.; Taylor, M.G.G.T. Dawn–dusk asymmetries in the coupled solar wind–magnetosphere–ionosphere system: a review. Annales Geophysicae. 2014, 32 (7): 705–737. Bibcode:2014AnGeo..32..705W. S2CID 55038191. arXiv:1701.04701可免费查阅. doi:10.5194/angeo-32-705-2014. 
  78. ^ Graham, D.B.; Yu. V. Khotyaintsev; A. Vaivads; M. Andre; A. N. Fazakerley. Electron Dynamics in the Diffusion Region of Asymmetric Magnetic Reconnection. Physical Review Letters. 2014, 112 (21): 215004. Bibcode:2014PhRvL.112u5004G. doi:10.1103/PhysRevLett.112.215004可免费查阅. 
  79. ^ Luo, H.; E. A. Kronberg; E. E. Grigorenko; M. Fränz; P. W. Daly; G. X. Chen; A. M. Du; L. M. Kistler; Y. Wei. Evidence of strong energetic ion acceleration in the near‐Earth magnetotail. Geophysical Research Letters. 2014, 41 (11): 3724–3730. Bibcode:2014GeoRL..41.3724L. doi:10.1002/2014GL060252可免费查阅. 
  80. ^ Tsyganenko, N. Data-based modeling of the geomagnetosphere with an IMF-dependent magnetopause. Journal of Geophysical Research: Space Physics. 2014, 119 (1): 335–354. Bibcode:2014JGRA..119..335T. doi:10.1002/2013JA019346. 
  81. ^ Shen, C.; Y.Y. Yang; Z.J. Rong; X. Li; M. Dunlop; C.M. Carr; Z.X. Liu; D.N. Baker; Z.Q. Chen; Y. Ji; G. Zeng. Direct calculation of the ring current distribution and magnetic structure seen by Cluster during geomagnetic storms. Journal of Geophysical Research: Space Physics. 2014, 119 (4): 2458–2465. Bibcode:2014JGRA..119.2458S. doi:10.1002/2013JA019460可免费查阅. 
  82. ^ Nakamura, R.; T. Karlsson; M. Hamrin; H. Nilsson; O. Marghitu; O. Amm; C. Bunescu; V. Constantinescu; H.U. Frey; A. Keiling; J. Semeter; E. Sorbalo; J. Vogt; C. Forsyth; M.V. Kubyshkina. Low-altitude electron acceleration due to multiple flow bursts in the magnetotail. Geophysical Research Letters. 2014, 41 (3): 777–784. Bibcode:2014GeoRL..41..777N. doi:10.1002/2013GL058982可免费查阅. 
  83. ^ Décréau, P.M.E.; et al. Remote sensing of a NTC radio source from a Cluster tilted spacecraft pair. Annales eophysicae. 2013, 31 (11): 2097–2121. Bibcode:2013AnGeo..31.2097D. doi:10.5194/angeo-31-2097-2013可免费查阅. 
  84. ^ Haaland, S.; J. Gjerloev. On the relation between asymmetries in the ring current and magnetopause current. Journal of Geophysical Research: Space Physics. 2013, 118 (7): 7593–7604. Bibcode:2013JGRA..118.7593H. doi:10.1002/jgra.50239. hdl:2027.42/99669可免费查阅. 
  85. ^ Darrouzet, F.; et al. Links between the plasmapause and the radiation belt boundaries as observed by the instruments CIS, RAPID, and WHISPER onboard Cluster. Journal of Geophysical Research: Space Physics. 2013, 118 (7): 4176–4188. Bibcode:2013JGRA..118.4176D. doi:10.1002/jgra.50239. hdl:2027.42/99669可免费查阅. 
  86. ^ Fu, H.S.; et al. Energetic electron acceleration by unsteady magnetic reconnection. Nature Physics. 2013, 9 (7): 426–430. Bibcode:2013NatPh...9..426F. doi:10.1038/nphys2664可免费查阅. 
  87. ^ Dandouras, I. Detection of a plasmaspheric wind in the Earth's magnetosphere by the Cluster spacecraft 31 (7): 1143–1153. 2013. Bibcode:2013AnGeo..31.1143D. doi:10.5194/angeo-31-1143-2013可免费查阅.  已忽略未知参数|journa= (帮助)
  88. ^ Viberg, H.; et al. Mapping High-Frequency Waves in the Reconnection Diffusion Region. Geophysical Research Letters. 2013, 40 (6): 1032–1037. Bibcode:2013GeoRL..40.1032V. doi:10.1002/grl.50227可免费查阅. 
  89. ^ Cao, J.; et al. Kinetic analysis of the energy transport of bursty bulk flows in the plasma sheet. Journal of Geophysical Research: Space Physics. 2013, 118 (1): 313–320. Bibcode:2013JGRA..118..313C. doi:10.1029/2012JA018351可免费查阅. 
  90. ^ Perri, S.; et al. Detection of small scale structures in the dissipation regime of solar wind turbulence. Physical Review Letters. 2012, 109 (19): 191101. Bibcode:2012PhRvL.109s1101P. PMID 23215371. doi:10.1103/PhysRevLett.109.191101. 
  91. ^ Hwang, K.-J.; et al. The first in situ observation of Kelvin-Helmholtz waves at high-latitude magnetopause during strongly dawnward interplanetary magnetic field conditions. Journal of Geophysical Research: Space Physics. 2012, 117 (A8): A08233. Bibcode:2012JGRA..117.8233H. doi:10.1029/2011JA017256. hdl:2060/20140009615可免费查阅. 
  92. ^ Norgren, C.; et al. Lower hybrid drift waves: space observations. Physical Review Letters. 2012, 109 (5): 55001. Bibcode:2012PhRvL.109e5001N. PMID 23006181. doi:10.1103/PhysRevLett.109.055001. 
  93. ^ Nykyri, K.; et al. On the origin of high-energy particles in the cusp diamagnetic cavity. Journal of Atmospheric and Solar-Terrestrial Physics. 2012, 87–88 (Special Issue on Physical Process in the Cusp: Plasma Transport and Energization): 70–81. Bibcode:2012JASTP..87...70N. doi:10.1016/j.jastp.2011.08.012. 
  94. ^ Wei, Y.; et al. Enhanced atmospheric oxygen outflow on Earth and Mars driven by a corotating interaction region. Journal of Geophysical Research: Space Physics. 2012, 117 (A16): 3208. Bibcode:2012JGRA..117.3208W. doi:10.1029/2011JA017340可免费查阅. 
  95. ^ Egedal, J.; et al. Large-scale electron acceleration by parallel electric fields during magnetic reconnection. Nature Physics. 2012, 8 (4): 321–324. Bibcode:2012NatPh...8..321E. doi:10.1038/nphys2249可免费查阅. 
  96. ^ André, M.; C.M. Cully. Low-energy ions: A previously hidden solar system particle population, in press. Geophysical Research Letters. February 2012, 39 (3): n/a. Bibcode:2012GeoRL..39.3101A. doi:10.1029/2011GL050242可免费查阅. 
  97. ^ Schwartz, S.J.; et al. Electron temperature gradient scale at collisionless shocks (PDF). Physical Review Letters. 2011, 107 (21): 215002 [2021-12-29]. Bibcode:2011PhRvL.107u5002S. PMID 22181889. doi:10.1103/PhysRevLett.107.215002. hdl:10044/1/18881可免费查阅. (原始内容存档 (PDF)于2021-12-29). 
  98. ^ Shay, M.A.; et al. Super-Alfvénic Propagation of Substorm Reconnection Signature and Poynting Flux. Physical Review Letters. 2011, 107 (6): 065001. Bibcode:2011PhRvL.107f5001S. PMID 21902330. arXiv:1104.0922可免费查阅. doi:10.1103/PhysRevLett.107.065001. 
  99. ^ Turner, A.J.; et al. Nonaxisymmetric Anisotropy of Solar Wind Turbulence. Physical Review Letters. 2011, 107 (9): 095002. Bibcode:2011PhRvL.107i5002T. PMID 21929247. S2CID 736486. arXiv:1106.2023可免费查阅. doi:10.1103/PhysRevLett.107.095002. 
  100. ^ Khotyaintsev, Y.; et al. Plasma Jet Braking: Energy Dissipation and Nonadiabatic Electrons (PDF). Physical Review Letters. 2011, 106 (16): 165001 [2021-12-29]. Bibcode:2011PhRvL.106p5001K. PMID 21599373. doi:10.1103/PhysRevLett.106.165001. (原始内容存档 (PDF)于2017-09-22). 
  101. ^ Marklund, G.T.; et al. Altitude distribution of the auroral acceleration potential determined from Cluster satellite data at different heights. Physical Review Letters. 2011, 106 (5): 055002. Bibcode:2011PhRvL.106e5002M. PMID 21405403. doi:10.1103/PhysRevLett.106.055002可免费查阅. 
  102. ^ Echim, M.; et al. Comparative investigation of the terrestrial and Venusian magnetopause: Kinetic modeling and experimental observations by Cluster and Venus Express. Planetary and Space Science. 2011, 59 (10): 1028–1038. Bibcode:2011P&SS...59.1028E. doi:10.1016/j.pss.2010.04.019. 
  103. ^ Sahraoui, F.; et al. Three dimensional anisotropic k spectra of turbulence at subproton scales in the solar wind. Physical Review Letters. 2010, 105 (13): 131101. Bibcode:2010PhRvL.105m1101S. PMID 21230758. doi:10.1103/PhysRevLett.105.131101. 
  104. ^ Masson, A.; et al, A decade revealing the Sun-Earth connection in three dimensions, Eos, Transactions American Geophysical Union, 2011, 92 (1): 4, Bibcode:2011EOSTr..92Q...4M, doi:10.1029/2011EO010007可免费查阅 
  105. ^ Kistler, L.M.; et al. Cusp as a source for oxygen in the plasma sheet during geomagnetic storms. Journal of Geophysical Research: Space Physics. 2010, 115 (A3): A03209. Bibcode:2010JGRA..115.3209K. doi:10.1029/2009JA014838可免费查阅. 
  106. ^ Yuan, Z.; et al. Link between EMIC waves in a plasmaspheric plume and a detached sub-auroral proton arc with observations of Cluster and IMAGE satellites (PDF). Geophysical Research Letters. 2010, 37 (7): L07108 [2021-12-29]. Bibcode:2010GeoRL..37.7108Y. doi:10.1029/2010GL042711. (原始内容存档 (PDF)于2021-12-29). 
  107. ^ Laakso, Harri; Taylor, Matthew; Escoubet, C. Philippe. Laakso, H.; et al , 编. The Cluster Active Archive – Studying the Earth's Space Plasma Environment. Astrophysics and Space Science Proceedings 11. Astrophys. & Space Sci. Proc. series, Springer. 2010: 1–489 [2021-12-29]. Bibcode:2010ASSP...11.....L. ISBN 978-90-481-3498-4. doi:10.1007/978-90-481-3499-1. (原始内容存档于2020-07-02). 
  108. ^ Hietala, H.; et al. Supermagnetosonic jets behind a collisionless quasiparallel shock. Physical Review Letters. 2009, 103 (24): 245001. Bibcode:2009PhRvL.103x5001H. PMID 20366203. S2CID 12557772. arXiv:0911.1687可免费查阅. doi:10.1103/PhysRevLett.103.245001. 
  109. ^ Zong, Q.-G.; et al. Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt. Journal of Geophysical Research: Space Physics. 2009, 114 (A10): A10204. Bibcode:2009JGRA..11410204Z. doi:10.1029/2009JA014393可免费查阅. 
  110. ^ Dunlop, M.; et al. Reconnection at High Latitudes: Antiparallel Merging. Physical Review Letters. 2009, 102 (7): 075005. Bibcode:2009PhRvL.102g5005D. PMID 19257682. doi:10.1103/PhysRevLett.102.075005. 
  111. ^ Sahraoui, F.; et al. Evidence of a cascade and dissipation of solar-wind turbulence at the electron gyroscale. Physical Review Letters. 2009, 102 (23): 231102. Bibcode:2009PhRvL.102w1102S. PMID 19658919. doi:10.1103/PhysRevLett.102.231102. 
  112. ^ Dandouras, I.; et al. Magnetosphere response to the 2005 and 2006 extreme solar events as observed by the Cluster and Double Star spacecraft. Advances in Space Research. 2009, 43 (23): 618–623. Bibcode:2009AdSpR..43..618D. doi:10.1016/j.asr.2008.10.015. 
  113. ^ Yordanova, E.; et al. Magnetosheath plasma turbulence and its spatiotemporal evolution as observed by the Cluster spacecraft. Physical Review Letters. 2008, 100 (20): 205003. Bibcode:2008PhRvL.100t5003Y. PMID 18518544. doi:10.1103/PhysRevLett.100.205003. 
  114. ^ Engwall, E.; et al. Magnetosheath plasma turbulence and its spatiotemporal evolution as observed by the Cluster spacecraft. Nature Geoscience. 2009, 2 (1): 24–27. Bibcode:2009NatGe...2...24E. doi:10.1038/ngeo387. 
  115. ^ Eastwood, J.; et al. The science of space weather. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2008, 366 (1884): 4489–4500. Bibcode:2008RSPTA.366.4489E. PMID 18812302. S2CID 49410. doi:10.1098/rsta.2008.0161. 
  116. ^ Kronberg, E.; et al. Comparison of periodic substorms at Jupiter and Earth. Journal of Geophysical Research: Space Physics. 2008, 113: A04212. Bibcode:2008JGRA..11304212K. doi:10.1029/2007JA012880可免费查阅. 
  117. ^ Nilsson, H.; et al. An assessment of the role of the centrifugal acceleration mechanism in high altitude polar cap oxygen ion outflow. Annales Geophysicae. 2008, 26 (1): 145–157. Bibcode:2008AnGeo..26..145N. doi:10.5194/angeo-26-145-2008可免费查阅. 
  118. ^ He, J.-S.; et al. Electron trapping around a magnetic null (PDF). Geophysical Research Letters. 2008, 35 (14): L14104 [2021-12-29]. Bibcode:2008GeoRL..3514104H. doi:10.1029/2008GL034085可免费查阅. (原始内容存档 (PDF)于2018-07-23). 
  119. ^ He, J.-S.; et al. A magnetic null geometry reconstructed from Cluster spacecraft observations. Journal of Geophysical Research: Space Physics. 2008, 113 (A5): A05205. Bibcode:2008JGRA..113.5205H. doi:10.1029/2007JA012609可免费查阅. 
  120. ^ Mutel, R.L.; et al. Cluster multispacecraft determination of AKR angular beaming. Geophysical Research Letters. 2008, 35 (7): L07104. Bibcode:2008GeoRL..35.7104M. S2CID 18143005. arXiv:0803.0078可免费查阅. doi:10.1029/2008GL033377. 
  121. ^ Wei, X.H.; et al. Cluster observations of waves in the whistler frequency range associated with magnetic reconnection in the Earth's magnetotail. Journal of Geophysical Research: Space Physics. 2007, 112 (A10): A10225. Bibcode:2007JGRA..11210225W. doi:10.1029/2006JA011771可免费查阅. 
  122. ^ Trines, R.; et al. Spontaneous Generation of Self-Organized Solitary Wave Structures at Earth's Magnetopause (PDF). Physical Review Letters. 2007, 99 (20): 205006 [2021-12-29]. Bibcode:2007PhRvL..99t5006T. PMID 18233152. doi:10.1103/PhysRevLett.99.205006. (原始内容存档 (PDF)于2019-10-31). 
  123. ^ Phan, T.; et al. Evidence for an Elongated (>60 Ion Skin Depths) Electron Diffusion Region during Fast Magnetic Reconnection. Physical Review Letters. 2007, 99 (25): 255002. Bibcode:2007PhRvL..99y5002P. PMID 18233527. doi:10.1103/PhysRevLett.99.255002. 
  124. ^ Grigorenko, E.E.; et al. Spatial-Temporal characteristics of ion beamlets in the plasma sheet boundary layer of magnetotail. Journal of Geophysical Research: Space Physics. 2007, 112 (A5): A05218. Bibcode:2007JGRA..112.5218G. doi:10.1029/2006JA011986可免费查阅. 
  125. ^ Lavraud, B.; et al. Strong bulk plasma acceleration in Earth's magnetosheath: A magnetic slingshot effect?. Geophysical Research Letters. 2007, 34 (14): L14102. Bibcode:2007GeoRL..3414102L. doi:10.1029/2007GL030024. hdl:2027.42/94743可免费查阅. 
  126. ^ Rosenqvist, L.; et al. An unusual giant spiral arc in the polar cap region during the northward phase of a Coronal Mass Ejection. Annales Geophysicae. 2007, 25 (2): 507–517. Bibcode:2007AnGeo..25..507R. doi:10.5194/angeo-25-507-2007可免费查阅. 
  127. ^ Lui, A.T.Y.; et al. Breakdown of the frozen-in condition in the Earth's magnetotail. Journal of Geophysical Research: Space Physics. 2007, 112 (A4): A04215. Bibcode:2007JGRA..112.4215L. doi:10.1029/2006JA012000可免费查阅. 
  128. ^ Haaland, S.E.; et al. High-latitude plasma convection from Cluster EDI measurements: method and IMF-dependence. Annales Geophysicae. 2007, 25 (1): 239–253. Bibcode:2007AnGeo..25..239H. doi:10.5194/angeo-25-239-2007可免费查阅. 
  129. ^ Förster, M.; et al. High-latitude plasma convection from Cluster EDI: variances and solar wind correlations. Annales Geophysicae. 2007, 25 (7): 1691–1707. Bibcode:2007AnGeo..25.1691F. doi:10.5194/angeo-25-1691-2007可免费查阅. 
  130. ^ Sergeev, V.; Semenov, V.; Kubyshkina, M.; Ivanova, V.; Baumjohann, W.; Nakamura, R.; Penz, T.; Runov, A.; Zhang, T. L.; Glassmeier, K.-H.; Angelopoulos, V.; Frey, H.; Sauvaud, J.-A.; Daly, P.; Cao, J. B.; Singer, H.; Lucek, E. Observation of repeated intense near-Earth reconnection on closed field lines with Cluster, Double Star, and other spacecraft. Geophysical Research Letters. 2007, 34 (2): L02103. Bibcode:2007GeoRL..34.2103S. doi:10.1029/2006GL028452可免费查阅. 
  131. ^ Rae, J.; et al. Evolution and characteristics of global Pc5 ULF waves during a high solar wind speed interval (PDF). Journal of Geophysical Research. 2005, 110 (A12): A12211. Bibcode:2005JGRA..11012211R. doi:10.1029/2005JA011007可免费查阅. 
  132. ^ Zong, Q.-G.; et al. Ultralow frequency modulation of energetic particles in the dayside magnetosphere. Geophysical Research Letters. 2007, 34 (12): L12105. Bibcode:2007GeoRL..3412105Z. doi:10.1029/2007GL029915可免费查阅. 
  133. ^ Xiao, C.J.; et al. Satellite observations of separator-line geometry of three-dimensional magnetic reconnection. Nature Physics. 2007, 3 (9): 603–607. Bibcode:2007NatPh...3..609X. S2CID 119637705. arXiv:0705.1021可免费查阅. doi:10.1038/nphys650. 
  134. ^ Lobzin, V.V.; et al. Nonstationarity and reformation of high-Mach-number quasiperpendicular shocks: Cluster observations (PDF). Geophysical Research Letters. 2007, 34 (5): L05107 [2021-12-29]. Bibcode:2007GeoRL..3405107L. doi:10.1029/2006GL029095可免费查阅. (原始内容存档 (PDF)于2021-12-29). 
  135. ^ Lui, A.T.Y.; et al. Cluster observation of plasma flow reversal in the magnetotail during a substorm. Annales Geophysicae. 2006, 24 (7): 2005–2013. Bibcode:2006AnGeo..24.2005L. doi:10.5194/angeo-24-2005-2006可免费查阅. 
  136. ^ Retinò, A.; et al. In situ evidence of magnetic reconnection in turbulent plasma. Nature Physics. 2007, 3 (4): 236–238. Bibcode:2007NatPh...3..236R. doi:10.1038/nphys574可免费查阅. 
  137. ^ 137.0 137.1 Henderson, P.; et al. Cluster PEACE observations of electron pressure tensor divergence in the magnetotail (PDF). Geophysical Research Letters. 2006, 33 (22): L22106 [2021-12-29]. Bibcode:2006GeoRL..3322106H. doi:10.1029/2006GL027868可免费查阅. (原始内容存档 (PDF)于2017-09-22). 
  138. ^ Marklund, G.; et al. Cluster observations of an auroral potential and associated field-aligned current reconfiguration during thinning of the plasma sheet boundary layer. Journal of Geophysical Research: Space Physics. 2007, 112 (A1): n/a. Bibcode:2007JGRA..112.1208M. doi:10.1029/2006JA011804. 
  139. ^ Nykyri, K.; et al. Cluster observations of reconnection due to the Kelvin-Helmholtz instability at the dawnside agnetospheric flank. Annales Geophysicae. 2006, 24 (10): 2619–2643. Bibcode:2006AnGeo..24.2619N. doi:10.5194/angeo-24-2619-2006可免费查阅. 
  140. ^ Darrouzet, F.; et al. Spatial gradients in the plasmasphere from Cluster. Geophysical Research Letters. 2006, 33 (8): L08105. Bibcode:2006GeoRL..33.8105D. doi:10.1029/2006GL025727可免费查阅. 
  141. ^ Darrouzet, F.; et al. Analysis of plasmaspheric plumes: CLUSTER and IMAGE observations. Annales Geophysicae. 2006, 24 (6): 1737–1758. Bibcode:2006AnGeo..24.1737D. doi:10.5194/angeo-24-1737-2006可免费查阅. 
  142. ^ Marchaudon, A.; et al. Simultaneous Double Star and Cluster FTEs observations on the dawnside flank of the magnetosphere. Annales Geophysicae. 2005, 23 (8): 2877–2887. Bibcode:2005AnGeo..23.2877M. doi:10.5194/angeo-23-2877-2005可免费查阅. 
  143. ^ Cao, J.B.; et al. Joint observations by Cluster satellites of bursty bulk flows in the magnetotail. Journal of Geophysical Research. 2006, 111 (A4): A04206. Bibcode:2006JGRA..111.4206C. doi:10.1029/2005JA011322可免费查阅. 
  144. ^ Xiao, C.J.; et al. In situ evidence for the structure of the magnetic null in a 3D reconnection event in the Earth's magnetotail. Nature Physics. 2006, 2 (7): 478–483. Bibcode:2006NatPh...2..478X. S2CID 18921009. arXiv:physics/0606014可免费查阅. doi:10.1038/nphys342. 
  145. ^ Parks, G.; et al. Larmor radius size density holes discovered in the solar wind upstream of Earth's bow shock. Physics of Plasmas. 2006, 13 (5): 050701. Bibcode:2006PhPl...13e0701P. doi:10.1063/1.2201056. 
  146. ^ Mozer, F.; et al. Spatial gradients in the plasmasphere from Cluster. Geophysical Research Letters. 2005, 32 (24): L24102. Bibcode:2005GeoRL..3224102M. doi:10.1029/2005GL024092可免费查阅. 
  147. ^ Zhang, T.L..; et al. Double Star/Cluster observation of neutral sheet oscillations on 5 August 2004. Annales Geophysicae. 2005, 23 (8): 2909–2914. Bibcode:2005AnGeo..23.2909Z. doi:10.5194/angeo-23-2909-2005可免费查阅. 
  148. ^ Sahraoui, F.; et al. Anisotropic turbulent spectra in the terrestrial magnetosheath: Cluster observations (PDF). Physical Review Letters. 2006, 96 (7): 075002 [2021-12-29]. Bibcode:2006PhRvL..96g5002S. PMID 16606099. doi:10.1103/PhysRevLett.96.075002. (原始内容存档 (PDF)于2021-12-29). 
  149. ^ Phan, T.; et al. A magnetic reconnection X-line extending more than 390 Earth radii in the solar wind. Nature. 2006, 439 (7073): 175–178. Bibcode:2006Natur.439..175P. PMID 16407946. S2CID 4381256. doi:10.1038/nature04393. 
  150. ^ Horne, R.B.; et al. Wave acceleration of electrons in the Van Allen radiation belts. Nature. 2005, 437 (7056): 227–230. Bibcode:2005Natur.437..227H. PMID 16148927. S2CID 1530882. doi:10.1038/nature03939. 
  151. ^ Sundkvist, D.; et al. In situ multi-satellite detection of coherent vortices as a manifestation of Alfvénic turbulence. Nature. 2005, 436 (7052): 825–828. Bibcode:2005Natur.436..825S. PMID 16094363. S2CID 4430255. doi:10.1038/nature03931. 
  152. ^ Vallat, C.; et al. First current density measurements in the ring current region using simultaneous multi-spacecraft CLUSTER-FGM data. Annales Geophysicae. 2005, 23 (5): 1849–1865. Bibcode:2005AnGeo..23.1849V. doi:10.5194/angeo-23-1849-2005可免费查阅. 
  153. ^ Øieroset, M.; et al. Global cooling and densification of the plasma sheet during an extended period of purely northward IMF on October 22–24, 2003. Geophysical Research Letters. 2005, 32 (12): L12S07. Bibcode:2005GeoRL..3212S07O. doi:10.1029/2004GL021523可免费查阅. 
  154. ^ Li, W.; et al. Plasma sheet formation during long period of northward IMF. Geophysical Research Letters. 2005, 32 (12): L12S08. Bibcode:2005GeoRL..3212S08L. doi:10.1029/2004GL021524可免费查阅. 
  155. ^ Louarn, P.; et al. Cluster observations of complex 3D magnetic structures at the magnetopause. Geophysical Research Letters. 2004, 31 (19): L19805. Bibcode:2004GeoRL..3119805L. doi:10.1029/2004GL020625可免费查阅. 
  156. ^ Nakamura, R.; et al. Spatial scale of high-speed flows in the plasma sheet observed by Cluster. Geophysical Research Letters. 2004, 31 (9): L09804. Bibcode:2004GeoRL..31.9804N. doi:10.1029/2004GL019558可免费查阅. 
  157. ^ Knetter, T.; et al. Four-point discontinuity observations using Cluster magnetic field data: A statistical survey. Journal of Geophysical Research. 2004, 109 (A6): A06102. Bibcode:2004JGRA..109.6102K. doi:10.1029/2003JA010099. 
  158. ^ Décréau, P.; et al. Observation of continuum radiations from the Cluster fleet: first results from direction finding. Annales Geophysicae. 2004, 22 (7): 2607–2624. Bibcode:2004AnGeo..22.2607D. doi:10.5194/angeo-22-2607-2004可免费查阅. 
  159. ^ Hasegawa, H.; et al. Transport of solar wind into Earth's magnetosphere through rolled-up Kelvin–Helmholtz vortices. Nature. 2004, 430 (7001): 755–758. Bibcode:2004Natur.430..755H. PMID 15306802. S2CID 4335442. doi:10.1038/nature02799. 
  160. ^ Sergeev, V.; et al. Orientation and propagation of current sheet oscillations. Geophysical Research Letters. 2004, 31 (5): L05807. Bibcode:2004GeoRL..31.5807S. doi:10.1029/2003GL019346可免费查阅. 
  161. ^ Zong, Q.-G.; et al. Triple cusps observed by Cluster-Temporal or spatial effect?. Geophysical Research Letters. 2004, 31 (9): L09810. Bibcode:2004GeoRL..3109810Z. doi:10.1029/2003GL019128. 
  162. ^ Bale, S.; et al. Density-Transition Scale at Quasiperpendicular Collisionless Shocks. Physical Review Letters. 2003, 91 (26): 265004. Bibcode:2003PhRvL..91z5004B. PMID 14754061. doi:10.1103/PhysRevLett.91.265004. 
  163. ^ Frey, H.; et al. Continuous magnetic reconnection at Earth's magnetopause. Nature. 2003, 426 (6966): 533–537. Bibcode:2003Natur.426..533F. PMID 14654835. S2CID 4421604. doi:10.1038/nature02084. 
  164. ^ Runov, A.; et al. Current sheet structure near magnetic X-line observed by Cluster. Geophysical Research Letters. 2003, 30 (10): 1579. Bibcode:2003GeoRL..30.1579R. doi:10.1029/2002GL016730可免费查阅. 
  165. ^ Phan, T.; et al. Simultaneous Cluster and IMAGE Observations of Cusp Reconnection and Auroral Spot for Northward IMF. Geophysical Research Letters. 2003, 30 (10): n/a. Bibcode:2003GeoRL..30.1509P. doi:10.1029/2003GL016885. 
  166. ^ Runov, A.; Nakamura, R.; Baumjohann, W.; Zhang, T. L.; Volwerk, M.; Eichelberger, H.-U.; Balogh, A. Cluster observation of a bifurcated current sheet. Geophysical Research Letters. 2003-01-17, 30 (2): 1036 [2023-03-13]. Bibcode:2003GeoRL..30.1036R. doi:10.1029/2002GL016136. (原始内容存档于2023-03-13). 
  167. ^ Dunlop, M.; et al. Four-point Cluster application of magnetic field analysis tools: The Curlometer. Journal of Geophysical Research. 2002, 107 (A11): 1384. Bibcode:2002JGRA..107.1384D. doi:10.1029/2001JA005088. 
  168. ^ Nakamura, R.; et al. Fast flow during current sheet thinning (PDF). Geophysical Research Letters. 2002, 29 (23): 2140 [2021-12-29]. Bibcode:2002GeoRL..29.2140N. doi:10.1029/2002GL016200可免费查阅. (原始内容存档 (PDF)于2021-12-29). 
  169. ^ Baker, D.N.; et al. A telescopic and microscopic view of a magnetospheric substorm on 31 March 2001. Geophysical Research Letters. 2002, 29 (18): 1862. Bibcode:2002GeoRL..29.1862B. doi:10.1029/2001GL014491可免费查阅. 
  170. ^ Marklund, G.; et al. Temporal evolution of the electric field accelerating electrons away from the auroral ionosphere. Nature. 2001, 414 (6865): 724–727. Bibcode:2001Natur.414..724M. PMID 11742392. S2CID 4418541. doi:10.1038/414724a. 
  171. ^ Décréau, P.; et al. Early results from the Whisper instrument on Cluster: an overview. Annales Geophysicae. 2001, 19 (10/12): 1241–1258. Bibcode:2001AnGeo..19.1241D. doi:10.5194/angeo-19-1241-2001可免费查阅. 
  172. ^ Paschmann, G.; S.J. Schwartz; C.P. Escoubet; S. Haal bibcode = 2005ombc.book.....P (编). Outer Magnetospheric Boundaries: Cluster Results. reprinted from Space Sci. Rev., 118, 1–4, Springer, Berlin. 2005: 1–434. 

外部链接

[编辑]