跳至內容

馬格努斯展開

維基百科,自由的百科全書

數學物理學中,馬格努斯展開(英語:Magnus expansion)為線性算子的一階齊次線性微分方程的解提供了指數表示,得名於數學家威廉·馬格努斯。特別地,這種方法提供了變係數n階線性常微分方程組的基矩陣。指數是無窮級數,其項涉及多重積分和嵌套換元。

確定情形

[編輯]

馬格努斯方法及其解釋

[編輯]

給定n × n係數矩陣A(t),我們希望求解與線性常微分方程相關的初值問題

其中Y(t)是未知n維向量函數。

n = 1時,解為

A(t)對任意一組t, t1t2仍滿足A(t1) A(t2) = A(t2) A(t1),則此式可推廣到n > 1情形。At無關時尤為如此。在一般情形下,上述表達式不再是問題的解。

馬格努斯提出的解矩陣初值問題的方法是,用某個n階方陣函數Ω(t, t0)的指數來表示解:

稍後可將其構造為級數展開式:

為簡單起見習慣將Ω(t, t0)寫作Ω(t),並取t0 = 0.

馬格努斯意識到,由於d/dt (eΩ) e−Ω = A(t),可利用龐加萊-豪斯多夫矩陣恆等式將Ω的時間導數和伯努利數及 Ω伴隨自同態聯繫起來

並以「BCH展開的連續類似物」遞歸求解Ω,下詳。

上式構成了矩陣線性初值問題求解的馬格努斯展開式馬格努斯級數。前4項:

其中[A, B] ≡ A BB AAB的矩陣交換子

這些方程可解釋如下:Ω1(t)與純量(n = 1)情形下的指數完全重合,但這方程無法給出整個解。若堅持要用指數表示(李群),則要對指數進行修正。馬格努斯級數的剩餘部分系統地提供了修正:Ω或其部分在解的李群李代數中。

在應用中,很少能對馬格努斯級數精確求和,而要截斷才能得到近似解。馬格努斯方法的主要優勢在於,中截級數通常和精確解具有相同的重要性質,這異於傳統攝動理論。例如,經典力學中,時間演化辛幾何特徵在每階近似都得到保留。同樣,量子力學時間演化算子的么正性也得到保留(例如,與解決同一問題的戴森級數相反)。

擴展的收斂性

[編輯]

從數學角度看,收斂問題如下:給定矩陣A(t),何時可得作為馬格努斯級數和的指數Ω(t)

t ∈ [0,T)時,級數收斂的充分條件是

其中表示矩陣範數。這個結果是通用的,因為可構造特定矩陣,t > T時級數都發散。

馬格努斯生成器

[編輯]

生成馬格努斯展開式中所有項的遞歸過程利用了下面的遞歸定義的矩陣 Sn(k)

然後得到

此處adkΩ是迭代交換子的簡寫(參見伴隨自同態):

其中Bj伯努利數,而B1 = −1/2

最後,明確算得這一遞歸後,就可將Ωn(t)表為涉及n個矩陣A的n-1個嵌套換元的n重積分的線性組合:

隨着n增加,這個式子會變複雜。

隨機情形

[編輯]

推廣到隨機常微分方程

[編輯]

要推廣到隨機常微分方程,令布朗運動概率空間 上,有限時間區間和自然過濾。現在,考慮線性矩陣值隨機伊藤積分方程(索引j採用愛因斯坦求和約定)

其中是逐步可測的值有界隨機過程單位矩陣。參考確定情形,並依隨機情形做修改[1],相應的矩陣對數將變為伊藤過程,其展開的前兩項為, 其中ij根據愛因斯坦求和約定

推廣的收斂性

[編輯]

隨機情形下,收斂將受制於停止時間,第一個收斂結果如下:[2] 在前面關於係數的假設下,存在強解及嚴格為正的停止時間,使得:

  1. 在時間之前有實數對數,即
  2. 以下表示有把握成立:

    其中是隨機馬格努斯展開的第n項,定義見下文馬格努斯展開式小節;
  3. 存在正常數C,僅取決於,其中,於是

馬格努斯展開式

[編輯]

隨機馬格努斯展開的推廣形式:

其中通用項是形式為下式的伊藤過程:

項可遞歸定義為

其中

算子S定義為

應用

[編輯]

1960年代以來,馬格努斯展開作為一種攝動理論工具,已成功應用於物理學化學的許多領域,從原子物理學分子物理學核磁共振[3]量子電動力學。自1998年以來,它還用於構建矩陣線性微分方程數值積分的實用算法。由於它們集成了馬格努斯展開的特性,保留了問題的定性特徵,因此相應方案也是幾何積分的典型例子。

另見

[編輯]

註釋

[編輯]
  1. ^ Kamm, Pagliarani & Pascucci 2021
  2. ^ Kamm, Pagliarani & Pascucci 2021,Theorem 1.1
  3. ^ Haeberlen, U.; Waugh, J.S. Coherent Averaging Effects in Magnetic Resonance. Phys. Rev. 1968, 175 (2): 453–467. Bibcode:1968PhRv..175..453H. doi:10.1103/PhysRev.175.453. 

參考文獻

[編輯]