
牛顿法
跳到导航
跳到搜索
牛顿法(英语:Newton's method)又称为牛顿-拉弗森方法(英语:Newton-Raphson method),它是一种在实数域和复数域上近似求解方程的方法。方法使用函数的泰勒级数的前面几项来寻找方程的根。
起源[编辑]
牛顿法最初由艾萨克·牛顿在《流数法》(Method of Fluxions,1671年完成,在牛顿去世后于1736年公开发表)中提出。约瑟夫·鲍易也曾于1690年在Analysis Aequationum中提出此方法。
方法说明[编辑]
首先,选择一个接近函数零点的,计算相应的和切线斜率(这里表示函数的导数)。然后我们计算穿过点并且斜率为的直线和轴的交点的坐标,也就是求如下方程的解:
我们将新求得的点的坐标命名为,通常会比更接近方程的解。因此我们现在可以利用开始下一轮迭代。迭代公式可化简为如下所示:
已有证明牛顿迭代法的二次收敛[1]必须满足以下条件:
; 对于所有,其中为区间[α − r, α + r],且在区间其中内,即 的;
对于所有,是连续的;
足够接近根 α。
其它例子[编辑]
第一个例子[编辑]
求方程的根。令,两边求导,得。由于,则,即,可知方程的根位于和之间。我们从开始。
第二个例子[编辑]
牛顿法亦可发挥与泰勒展开式,对于函式展开的功能。
求的次方根。
设,
而a的m次方根,亦是x的解,
以牛顿法来迭代:
(或 )
应用[编辑]
求解最值问题[编辑]
牛顿法也被用于求函数的极值。由于函数取极值的点处的导数值为零,故可用牛顿法求导函数的零点,其迭代式为
求拐点的公式以此类推
注解[编辑]
外部链接[编辑]
- JAVA:牛顿勘根法 (繁体中文)
|