相親數
外觀
此條目包含過多行話或專業術語,可能需要簡化或提出進一步解釋。 (2019年6月13日) |
相親數(Amicable numbers),又稱親和數、友愛數、友好數,指兩個正整數中,彼此的全部正因數之和(本身除外)與另一方相等。畢達哥拉斯曾說:「朋友是你靈魂的倩影,要像220與284一樣親密。」
每一對親和數都是過剩數配虧數,較小的是過剩數,較大的是虧數。
例如220與284:
- 220的全部正因數(除掉本身)相加是:1+2+4+5+10+11+20+22+44+55+110=284
- 284的全部正因數(除掉本身)相加的和是:1+2+4+71+142=220
親和數中可輕易推出,一方的全部正因數之和與另一方的全部正因數之和相等。(此敘述不可逆,不能用來判斷是否為親和數)
- 220的全部正因數之和是:1+2+4+5+10+11+20+22+44+55+110+220 = 284+220 = 504
- 284的全部正因數之和是:1+2+4+71+142+284 = 220+284 = 504
前十個相親數是:(220,284),(1184,1210),(2620,2924),(5020,5564),(6232,6368),(10744,10856),(12285,14595), (17296,18416),(63020,76084)和(66928,66992)……(OEIS數列A259180)。 (另見 A002025和 A002046)
歷史
[編輯]- 320年左右,古希臘畢達哥拉斯發現的220與284,是人類認識的第一對相親數.
- 約850年,阿拉伯數學家塔別脫·本·科拉就發現了相親數公式,後來稱為塔別脫·本·科拉法則。
- 1636年,費馬發現了另一對相親數:17296和18416。
- 1638年,笛卡兒也發現了一對相親數:9363584和9437056。
- 歐拉也研究過相親數這個課題。1750年,他一口氣向公眾拋出了60對相親數:2620和2924,5020和5564,6232和6368,……,從而引起了轟動。
- 1866年,年方16歲的義大利青年巴格尼尼(並非小提琴演奏家、作曲家的帕格尼尼)發現1184與1210是僅僅比220與284稍為大一些的第二對相親數。
- 目前,人們已找到了12,000,000多對相親數。但相親數是否有無窮多對,相親數的兩個數是否都是或同是奇數,或同是偶數,而沒有一奇一偶等,這些問題還有待繼續探索。
尋找方法
[編輯]歐拉法則
[編輯]對於正整數,,,,。若均為質數,則和是相親數。這個法則能找出符合親和數的數對,但時沒有其他符合的數對。
塔別脫·本·科拉法則
[編輯]這是歐拉法則的特殊情況:第個塔別脫·本·科拉數。若、和均為質數,則和是相親數。
其他
[編輯]- 在目前所有已知的情況下,相親數皆同為偶數或同為奇數。目前不知道一奇一偶的相親數是否存在,但若存在,則偶數必須為完全平方數或其兩倍,且奇數也必須是完全平方數。
- 目前已知存在7對具有不同的最小質因數的相親數。[1]
- 在目前所有已知的情況下,相親數皆具有質公因數。目前不知道是否存在互質的相親數。若存在,兩者乘積必大於1067.[來源請求]
- 1955年,艾狄胥·帕爾(PaulErdős)說明相親數相對於正整數的密度為0。[2]
參看
[編輯]延伸閱讀
[編輯]- 公有領域出版物的文本: Chisholm, Hugh (編). Amicable Numbers. Encyclopædia Britannica (第11版). London: Cambridge University Press. 1911. 本條目包含來自
- Sándor, Jozsef; Crstici, Borislav. Handbook of number theory II. Dordrecht: Kluwer Academic. 2004: 32–36. ISBN 978-1-4020-2546-4. Zbl 1079.11001.
- Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. London: Penguin Group. 1987: 145–147.
- 埃里克·韋斯坦因. Amicable Pair. MathWorld.
- Weisstein, Eric W. Thâbit ibn Kurrah Rule. MathWorld.
- Weisstein, Eric W. Euler's Rule. MathWorld.
- ^ Amicable pairs news. [2022-11-21]. (原始內容存檔於2021-07-18).
- ^ Erdős, Paul. On amicable numbers (PDF). Publicationes Mathematicae Debrecen. 1955, 4: 108–111. (原始內容存檔 (PDF)於2022-10-09).