# 反三角函数积分表

## 逆正弦

• $\int \arcsin \frac{x}{c} \ dx = x \arcsin \frac{x}{c} + \sqrt{c^2 - x^2}$
• $\int x \arcsin \frac{x}{c} \ dx = \left( \frac{x^2}{2} - \frac{c^2}{4} \right) \arcsin \frac{x}{c} + \frac{x}{4} \sqrt{c^2 - x^2}$
• $\int x^2 \arcsin \frac{x}{c} \ dx = \frac{x^3}{3} \arcsin \frac{x}{c} + \frac{x^2 + 2c^2}{9} \sqrt{c^2 - x^2}$
• $\int x^n \arcsin x \ dx = \frac{1}{n + 1} \left( x^{n + 1} \arcsin x + \frac{x^n \sqrt{1 - x^2} - n x^{n - 1} \arcsin x}{n - 1} + n \int x^{n - 2} \arcsin x \ dx \right)$

## 逆正切

• $\int \arctan \frac{x}{c} \ dx = x \arctan \frac{x}{c} - \frac{c}{2} \ln(c^2 + x^2)$
• $\int x \arctan \frac{x}{c} \ dx = \frac{c^2 + x^2}{2} \arctan \frac{x}{c} - \frac{c x}{2}$
• $\int x^2 \arctan \frac{x}{c} \ dx = \frac{x^3}{3} \arctan \frac{x}{c} - \frac{c x^2}{6} + \frac{c^3}{6} \ln{c^2 + x^2}$
• $\int x^n \arctan \frac{x}{c} \ dx = \frac{x^{n + 1}}{n + 1} \arctan \frac{x}{c} - \frac{c}{n + 1} \int \frac{x^{n + 1}}{c^2 + x^2} \ dx, \quad n \neq 1$

## 逆正割

• $\int \arcsec \frac{x}{c} \ dx = x \arcsec \frac{x}{c} + \frac{x}{c |x|} \ln \left| x \pm \sqrt{x^2 - 1} \right|$
• $\int x \arcsec x \ dx = \frac{1}{2} \left( x^2 \arcsec x - \sqrt{x^2 - 1} \right)$
• $\int x^n \arcsec x \ dx = \frac{1}{n + 1} \left( x^{n + 1} \arcsec x - \frac{1}{n} \left[ x^{n - 1} \sqrt{x^2 - 1} + (1 - n) \left( x^{n - 1} \arcsec x + (1 - n) \int x^{n - 2} \arcsec x \ dx \right) \right] \right)$

## 逆余切

• $\int \arccot \frac{x}{c} \ dx = x \arccot \frac{x}{c} + \frac{c}{2} \ln(c^2 + x^2)$
• $\int x \arccot \frac{x}{c} \ dx = \frac{c^2 + x^2}{2} \arccot \frac{x}{c} + \frac{c x}{2}$
• $\int x^2 \arccot \frac{x}{c} \ dx = \frac{x^3}{3} \arccot \frac{x}{c} + \frac{c x^2}{6} - \frac{c^3}{6} \ln(c^2 + x^2)$
• $\int x^n \arccot \frac{x}{c} \ dx = \frac{x^{n + 1}}{n+1} \arccot \frac{x}{c} + \frac{c}{n + 1} \int \frac{x^{n + 1}}{c^2 + x^2} \ dx, \quad n \neq 1$