紐結理論

维基百科,自由的百科全书
跳转至: 导航搜索
最简单的三叠纽

纽结理论拓扑学的一个分支,研究纽结的拓扑学特性。

较为复杂的纽结
用三维模型展示扭结

历史[编辑]

结绳纪事由来远古,但从数学上研究纽结,始于德国数学家卡爾·弗里德里希·高斯,高斯研究电磁场的性质,认为与纽结有关。1867年凱爾文勳爵认为原子是以太漩涡的纽结,可用不同种类的纽结将原子分类,并用来解释为何原子的吸收光谱呈现不连续的现象。

苏格兰理论物理学家彼德·G·泰特用多年时间研究出纽结分类表,相信他正在创造一个元素表。1887年迈克耳孙-莫雷实验证明“以太”不存在,“以太漩涡论”成为过时理论。十九世纪末叶,产生拓扑学,纽结论再此成为热点研究课题。今日纽结论的应用包括弦理論DNA复制统计力学等领域。

Reidemeister 移動[编辑]

The Reidemeister moves

1927年,J.W. 亞歷山大 和G.B. Briggs,以及 Kurt Reidemeister 獨立地提出了如何判定兩個結是相同的方法:如果由一個結可以透過幾種基本的動作變成另一個結,它們便是相等的。這些運算稱為Reidemeister 移動

高阶纽结图[编辑]

由一個n,只可以在n+2維空間扭成結,而且必定能在n+3維空間解結。(E.C. Zeeman)

纽结連通和[编辑]

兩個結可以「相加」。考慮兩個結的平面投影,假設投影不相交。在平面找出一個長方形,使得每個結都有一條線在長方形內,結的邊靠近長方形的對邊,而且長方形其他部分沒有和結相交。將兩線剪開,上面的部分和上面的部分連起,下面的和下面的連起。這運算稱為連通和

這個在結的運算,形成了一個交換的么半群,且有素分解:如果一個結K只可以寫作K+0=K或0+K=K,K便是素纽结。(0表示沒有扭過的結。)

参看[编辑]