本页使用了标题或全文手工转换

史瓦西度規

维基百科,自由的百科全书
跳转至: 导航搜索

史瓦西度規Schwarzschild metric),又稱史瓦西幾何、史瓦西解,是卡爾·史瓦西於1915年針對广义相对论的核心方程——愛因斯坦場方程式——关于球状物质分布的解。此解所對應的幾何,可以是球狀星球以外的時空,也可以是靜止不旋轉、不帶電荷黑洞(稱「史瓦西黑洞」)的時空幾何。 任何物體被壓縮成史瓦西度規將會形成黑洞

史瓦西度規[编辑]

利用史瓦西座標史瓦西度規可以表示成如下形式:

其中重力常數解釋為產生重力的物體之質量,而

二維球面(2-sphere)上的標準度規(即:立體角的標準單元)。

常數

稱作史瓦西半徑,在史瓦西解中扮演關鍵角色。

史瓦西度規實際上是真空場方程式的解析解,意思上表示其僅在重力來源物體以外的地方能夠成立。也就是說,對一半徑之球狀體,此解僅在時成立。然而,若少於史瓦西半徑,此時解描述的是一個黑洞(見下文)。為了要描述重力來源物體內部與外部兩者的重力場,史瓦西解必須跟一個適當的內部解在處相洽。

注意到當,史瓦西度規近似為閔可夫斯基時空

直觀上說,這樣的結果是合理的:既然遠離了重力來源物體,時空理應變得近乎平直。具有這樣性質的度規稱作是「漸進平直 (asymptotically flat)」。

歷史[编辑]

如其名,卡爾·史瓦西是第一個發現史瓦西度規的人。該精確解發現於1915年底,旋即在1916年初發表,只比廣義相對論本身晚幾個月發表而已。不過史瓦西在發表論文後不久便死於在第一世界大戰服役所得的疾病。史瓦西解是除了顯然的平空間解之外,第一個為世人所知的愛因斯坦方程精確解。而在1916年,約翰內斯·德羅斯特以更簡單,更直接的方式獨立推導出了史瓦西解。

在廣義相對論發表之初,物理學家對史瓦西解,或其他解內的奇異點的意義不甚了解。事實上,在史瓦西的文章中,他將我現今認為是事件視界的那點設為徑向座標的原點,而又在文章中引進了一個輔助座標,我們現今稱它為的史瓦西徑向座標,也就是上節公式中的座標。

一個更完整的分析在隔年由大衛·希爾伯特給出,並且指出了兩個可能的奇異點   。當時一般認為   為一個真正幾何上的奇點,但是對於 的本質仍不清楚。

保羅·班勒衛阿爾瓦·古爾斯特蘭德分別在1921和1922年獨立推導出愛因斯坦方程球對稱的真空解,他們在 處並沒有奇點。在那時他們並不了解這個解是史瓦西解在其他座標下的形式。事實上,他們還用此解說明廣義相對論是有缺失的。如今這個解被稱為古爾斯特蘭德-班勒衛座標(Gullstrand–Painlevé coordinates),顯示他只是史瓦西解的一個座標形式而已。

1924年亞瑟·愛丁頓構造出了第一個座標變換,使得史瓦西解在 處沒有奇點,也就是愛丁頓-芬克斯坦座標(Eddington–Finkelstein coordinates)。但是他似乎沒有意識到這個發現重要性。隨後在1932年喬治·勒梅特給出了另一個在 處沒有奇點的座標(勒梅特座標,Lemaître coordinates),並且意識到 處不是物理上真正的奇點。而在1939年霍華德·羅伯遜證明了一個自由墜落的觀測者,只會在有限的原時通過 處,雖然對一個在遠處的觀測者來說,需要耗費無限久的時間。

1950年約翰·辛格找出了整個史瓦西解的最大解析延拓形式,並且再次證明了 處奇點只是個標造成的假象。之後類似的最大解析延拓解也獨立的被塞凱賴什·哲爾吉馬丁·克魯斯卡爾發現。而這座標如今被稱為克魯斯卡爾-塞凱賴什座標(Kruskal-Szekeres coordinates)。這個座標比辛格給出的座標還要簡單許多,但是兩者都是一套可以完整覆蓋所有史瓦西解的座標系統。話雖如此,可能是因為發表的期刊的關係,勒梅特和辛格的論文並沒有受到學界注意,使得眾多知名的物理學家,包括愛因斯坦,都仁為在史瓦西半徑上的奇點是實際存在的。

隨後到了1960年代,一些更高等的數學工具例如微分幾何進入了廣義相對論的研究後,才有更多的進展。利用微分幾何的概念,勞倫茲流形上的奇點可以被精確的定義。而這讓整個史瓦西度規上的奇點完全地的確立下來。 並且正式的證明了處只是一時空上的事件視界而已。

相關條目[编辑]