芝诺悖论

维基百科,自由的百科全书
跳转至: 导航搜索

芝诺悖论古希腊数学家芝诺(Zeno of Elea)(盛年约在公元前464-前461)提出的一系列关于运动的不可分性的哲学悖论。这些悖论由于被记录在亚里士多德的《物理学》一书中而为后人所知。芝诺提出这些悖论是为了支持他老师巴门尼德关于“存在”不动、是一的学说。这些悖论是芝诺反对存在运动的论证其中最著名的两个是:“阿基里斯追乌龟”和“飞矢不动”。這些方法現在可以用微積分(無限)的概念解釋。

两分法悖论[编辑]

运动是不可能的。

由于运动的物体在到达目的地前必须到达其半路上的点,若假设空间无限可分则有限距离包括无穷多点,于是运动的物体会在有限时间内经过无限多点。

这裡的“运动”不是距离的概念,而是速度的概念。从A点到B点的运动不仅仅涉及到距离,并且涉及到时间。从A到B的运动如果发生在无限长的时间内,那么悖论就为真,因为此时速度为0。

速度这个概念虽然可以被表示为距离除以时间,但是速度是一个自然界的固有概念,并不依赖于时间和距离。所以庄子的万世不竭反倒成为一个真实的叙述,而不是悖论。

阿基里斯悖论[编辑]

动得最慢的物体不会被动得最快的物体追上。由于追赶者首先应该达到被追者出发之点,此时被追者已经往前走了一段距离。因此被追者总是在追赶者前面。
——亞里士多德物理學 VI:9, 239b15

如柏拉图描述,芝诺说这样的悖论,是兴之所至的小玩笑。首先,巴门尼德编出这个悖论,用来嘲笑“数学派”所代表的毕达哥拉斯的“1>0.999..., 1-0.999...>0”思想。然后,他又用这个悖论,嘲笑他的学生芝诺的“1=0.999..., 但1-0.999...>0”思想。最后,芝诺用这个悖论,反过来嘲笑巴门尼德的“1-0.999...=0, 或1-0.999...>0”思想。

譬如说,阿基里斯速度是10m/s,乌龟速度是1m/s,乌龟在前面100m。追乌龟要涉及到极限问题:。而极限是个无限过程,这涉及到潜无限问题,即无限过程无法完成,即1只能无限逼近,不能达到1,乌龟是不能被追上的。为此,潜无限只能假设空间不可以无限分割,这样悖论就不存在了。但实无限认为,无限过程可以完成,即极限可以达到1,乌龟可以追上。現在的实数,极限,微积分都建立在实无限上。对潜无限来说,实数,极限等都不成立,只能无限逼近。

P.S.目前數學界有"0.9999999999.......=1"之證明如下

      pf: 令 S=0.99999999999.......--❶
           則10S=9.9999999999.......--❷
           ❷-❶ 10S-S=9.9999999999...........-0.999999999..........
                     9S=9
                     S=1
           故得証0.9999999.........=1

悖論的解決

理論說得令人頭頭是道,但為何實際卻不是如此? 原因見下。

不妨令阿基里斯步行的速度為每秒10m, 烏龜爬行的速度為每秒0.1m, 並且在比賽之前, 阿基里斯讓烏龜先爬999m, 在這種條件下, 阿基里斯追趕烏龜所用的時間為:

 999 ÷ 10 = 99.9秒
 (99.9 × 0.1) ÷ 10 = 0.999秒
 (0.999 × 0.1) ÷ 10 = 0.00999秒
 · · · · · ·

這些數字, 按其先後排列, 可以構成一個無限序列:

 99.9, 0.999, 0.00999, · · ·
 
 其和為:S = 99.9/(1 −1/100) = 100.909090...秒

所以其實阿基里斯只要跑101秒,即可超越烏龜。換個角度說,阿基里斯之所以追不上烏龜,原因在題目的背面已經限制了阿基米斯追趕的時間。

飞矢不动悖论[编辑]

一支飞行的箭是静止的。

由于每一时刻这支箭都有其确定的位置因而是静止的,因此箭就不能处于运动状态。

但由於箭要達到每一時刻的固定位置必須存在動能,所以箭必須是運動狀態

這個悖論的問題在于,「飛行」的運動,是依賴于兩個時間點的。即從這一刻到那一刻的時間內,這支箭是否移動。

游行队伍悖论[编辑]

首先假設在操場上,在一瞬間(一个最小时间单位)裡,相对于观众席A,列队B、C将分别各向右和左移动一个距离单位。

 AAAA 观众席A
 BBBB 队列B・・・向右移动(→)
 CCCC 队列C・・・向左移动(←)

B、C两个列队开始移动,如下图所示相对于观众席A,B和C分别向右和左各移动了一个距离单位。

 AAAA
  BBBB
CCCC

而此时,对B而言C移动了两个距离单位。也就是,队列既可以在一瞬间(一个最小时间单位)裡移动一个距离单位,也可以在半个最小时间单位裡移动一个距离单位,这就产生了半个时间单位等于一个时间单位的矛盾。因此队列是移动不了的。

(四个悖论的叙述引自K.克莱茵(K.Klein)《古今数学思想》中译本,BillSmith对第四个悖论的原文作了修改以说得更清楚些。)

芝諾現象[编辑]

在一個跟時間有關的系統中,如果牽涉到有限時間內,無限多次的操作,我們會稱之芝諾現象或芝諾行為。一個簡單的例子是球在地面上反彈到停止的過程。處理這個問題的方法,是直接假設停止的時間點,只考慮反彈,不去考慮無窮多次,以計算無窮多次反彈之後的結果。