跳至內容

拉回 (微分幾何)

維基百科,自由的百科全書

微分幾何中,拉回是將一個流形上某種結構轉移到另一個流形上的一種方法。具體地說,假設 φ:MN 是從光滑流形 MN光滑映射;那麼伴隨有一個從 N 上 1- 形式(餘切叢截面)到 M 上 1-形式的線性映射,這個映射稱為由 φ 拉回,經常記作 φ*。更一般地,任何 N共變張量場——特別是任何微分形式——都可以由 φ 拉回到 M 上。

當映射 φ微分同胚,那麼拉回與前推一起,可以將任何 N 上的張量場變換到 M,或者相反。特別地,如果 φRn 的開集與 Rn 之間的微分同胚,視為坐標變換(也許在流形 M 上不同的坐標卡上),那麼拉回和前推描述了共變反變張量用更傳統方式(用基)表述的變換性質。

拉回概念背後的本質很簡單,是一個函數和另外一個函數的前複合。但是將這種想法運用到許多不同的情形,可以構造許多複雜的拉回。本文從簡單的操作開始,然後利用它們構造更複雜的。粗略地講,拉回手法(利用前複合)將微分幾何中多種不同的結構變成反變函子

光滑函數與光滑映射

[編輯]

設 φ:MN 是光滑流形 MN 之間的光滑映射,假設 f:NRN 上一個光滑函數。則 f 通過 φ 的拉回是 M 上的光滑函數 φ*f,定義為 (φ*f)(x) = f(φ(x))。類似地,如果 fN開集 U 上的光滑函數,則相同的公式定義了 M 中開集 φ-1(U) 上一個光滑函數。用的語言說,拉回定義了 N光滑函數層到 φ 的直接像(在 M 上光滑函數層中)的一個態射。

更一般地,如果 f:NA 是從 N 到任意其他流形 A 的光滑映射,則φ*f(x)=f(φ(x)) 是從 MA 的一個光滑映射。

叢與截面

[編輯]

如果 EN 上一個向量叢(或任意纖維叢),φ:MN 是光滑映射,那麼拉回叢 φ*EM 上一個向量叢(或更一般地纖維叢),其 M 中的點 x 處的纖維由 (φ*E)x = Eφ(x) 給出。

在此情形,前複合定義了 E 上截面的一個變換:如果 sNE 的一個截面,那麼拉回截面 M 上拉回叢 φ*E 的一個截面。

多重線性形式

[編輯]

設 Φ:VW 是向量空間 VW 之間的一個線性映射(即,Φ 是 L(V,W) 中的元素,也記成 Hom(V,W)),設

W 上一個多重線性形式(也稱為 (0,s) 階張量——但不要和張量場混淆——這裡 s 是乘積中 W 的因子的個數)。則 F 由 Φ 的拉回 Φ*F 是一個 V 上的多重線性形式,定義為 F 與 Φ 的前複合。準確地,給定 V 中向量 v1,v2,...,vs, Φ*F 由公式定義

這是 V 上一個多重線性形式。從而 Φ* 是一個從 W 上的多重線性形式到 V 上的多重線性形式的(線性)算子。作為一個特例,注意到如果 FW 上一個線性形式(或 (0,1) -張量),那麼 FW對偶空間 W* 中一個元素,則 Φ*FV* 中一個元素,所以拉回定義了對偶空間之間一個線性映射,作用的方向與線性映射 Φ 自己的方向相反:

從張量的觀點來看,自然想把來回這種概念推廣到任何階,即 W 上取值於 rW張量積 的線性映射。但是,這種張量積不能自然的拉回:不過有從 的前推算子,定義為

然而,如果 Φ 可逆,拉回可以用逆函數 Φ-1 的前推定義。將一個可逆線性映射與這兩個構造放在一起,得到了對任何 (r,s) 階張量一個拉回算子。

餘切向量與 1 形式

[編輯]

φ : MN光滑流形間的光滑映射。那麼 φ前推φ* = dφ (或 ),是從 M切叢 TM拉回叢 φ*TN 的(在 M 上)向量叢同態。從而 φ*轉置是從 φ*T*NM餘切叢 T*M 的叢映射。

現在假設 αT*N 的一個截面N 上一個 1-形式),將 αφ 前複合得到 φ*T*N 的一個拉回截面。將上述(逐點)叢映射應用到截面導致 αφ拉回,是 M 上一個 1-形式,定義為:

x 屬於 MX 屬於 TxM

(共變)張量場

[編輯]

對任何自然數 s,上述構造馬上可推廣到 (0,s) 階張量叢上。流形 N 上 (0,s) 張量場N 上張量叢的一個截面,在 Ny 點的截面是多重線性 s-形式空間

取 Φ 等於從 MN 的一個光滑映射的微分(逐點的),多重線性形式的拉回可與截面的拉回複合得出 M 上 (0,s) 張量場的拉回。更確切地,如果 SN 上一個 (0,s)-張量場,那麼 Sφ拉回M 上 (0,s)-張量場 φ*S,定義為

x 屬於 MXj 屬於 TxM

微分形式

[編輯]

共變張量場拉回的一個特別重要的例子是微分形式的拉回。如果 α 是一個微分 k-形式,即 TN(逐點)反交換 k-形式組成的外叢 ΛkT*N 的一個截面,則 α 的拉回是 M 上一個微分 k-形式,定義與上一節相同:

x 屬於 MXj 屬於 TxM

微分形式的拉回有兩個性質,使其非常有用。

1. 和楔積相容:假設同上,對 N 上的微分形式 α 與 β,

2. 和外導數 d 相容:如果 α 是 N 上一個微分形式,則

由微分同胚拉回

[編輯]

當流形之間的映射 φ微分同胚,即有一個光滑逆函數,則在向量場上也像 1-形式一樣定義拉回,從而通過擴張,對流形上任何混合張量場都可拉回。線性映射

可逆,給出

一個一般的混合型張量場通過張量積分解為 TNT*N 兩部分,分別用 Φ 與 Φ-1 變換。當 M = N 時,則拉回和前推刻畫了流形 M 上張量場的變換性質。用傳統術語說,拉回描述了張量共變指標的變換性質;相對地,反變指標的變換性質由前推給出。

由自同構拉回

[編輯]

上一節的構造有一個代表性特例,若 φ 是流形 M 到自己的微分同胚。在這種情況下,導數 dφGL(TM,φ*TM) 的一個截面。這樣便在通過一個一般線性群 GL(m) (m = dim M) 相配於 M 的標架叢 GL(M) 的任何叢的截面上導出了拉回作用。

拉回與李導數

[編輯]

將上述想法應用到由向量場 M 定義的微分同胚單參數群,對參數求導,得到了任意叢上的李導數概念。

聯絡(共變導數)

[編輯]

如果 N 上向量叢 E聯絡(或共變導數),φ 是從 MN 的光滑映射,那麼在 M 上的向量叢 φ*E 上有拉回聯絡 ,由等式

惟一確定。

另見

[編輯]

參考文獻

[編輯]
  • Jurgen Jost, Riemannian Geometry and Geometric Analysis, (2002) Springer-Verlag, Berlin ISBN 3-540-42627-2 See sections 1.5 and 1.6.
  • Ralph Abraham and Jarrold E. Marsden, Foundations of Mechanics, (1978) Benjamin-Cummings, London ISBN 0-8053-0102-X See section 1.7 and 2.3.
  • B. A. Dubrovin, et al., Modern Geometry Methods and Applications(Part I), (1999) Beijing World Publishing Corp., ISBN 7-5062-0123-2 See section 22.