
开集
開集是指不包含任何自己邊界點的集合。或者說,開集包含的任意一點的充分小的鄰域都包含在其自身中。
例如,实数线上的由不等式规定的集合称为开区间,是开集。这时候的边界为实数轴上的点2和5,如由不等式,或者规定的区间由于包含其边界,因此不能称之为开集。
开集的概念一般与拓扑概念是紧密联系着的,通常先公理化开集,然后通过其定义边界的概念。(详细请参照拓扑空间)
定义[编辑]
可以按不同的一般性程度来形式化开集的概念。
函数分析[编辑]
在Rn中点集是开集,如果在这个集合的所有点P都是内部点。
欧几里得空间[编辑]
n维欧几里得空间Rn的子集U是开集,如果给定任何在U中的点x,存在一个实数ε > 0使得,如果给定任何Rn中点y,有着从x到它的欧几里得距离小于ε,则y也属于U。等价的说,U是开集,如果所有U中的点有包含在U中的邻域。
度量空间[编辑]
度量空间(M,d)的子集U是开集,如果给定任何U中的点x,存在一个实数ε > 0使得,如果给定任何M中的点y,有d(x,y) < ε,则y也属于U。(等价的说,U是开集,如果所有U中的点有包含在U中的邻域。)
这推广了欧几里得空间的例子,因为带有欧几里得距离的欧几里得空间也是度量空间。
拓扑空间[编辑]
在拓扑空间中,开集是基础性的概念。你可以從任意集合X出發,再選取X的某個特定的子集族T,使T中的集合都满足作為開集應有的每一性质。这樣的子集族T被叫做X上的“拓扑”,而这个集合族的成员被叫做拓扑空间 (X,T)的开集。注意开集的无限交集不必為开集。若一個集合可以被构造为可数多个开集的交集,則稱其为Gδ集合。
开集的拓扑定义推广了度量空间定义:如果你從一个度量空间出發并如上述般定义开集,则所有开集的集合族将形成在这个度量空间上的拓扑。因此自然地,任何度量空间都是拓扑空间。(但有不是度量空间的拓扑空间。)
性质[编辑]
例子[编辑]
用处[编辑]
开集在拓扑学分支中有著基础的重要性。當定义拓扑空间和其他拓扑结构(处理邻近性与收敛此類概念,比如度量空间和一致空间)時,都會用到开集的概念。
拓扑空间X的每個子集A都包含至少一个(可能为空)开集;最大的这种开集被叫做A的内部。它可以通过取包含在A中的所有开集的并集来构造。
给定拓扑空间X和Y,从X到Y的函数f是连续的,如果在Y中的所有开集的前像是在X中的开集。映射f被叫做开映射,如果在X中的所有开集的像是Y中的开集。
实直线上的开集都是可数個不相交开区间的并集。
相关条目[编辑]
注释[编辑]
|