跳转到内容

金属蛋白:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
Joeinwiki留言 | 贡献
无编辑摘要
Joeinwiki留言 | 贡献
第8行: 第8行:


==功能==
==功能==
据估计,所有蛋白质中有大约一半含有金属<ref>{{cite journal | last1 = Thomson | first1 = A.&nbsp;J. | last2 = Gray | first2 = H.&nbsp;B. | year = 1998 | title = Bioinorganic chemistry | url = | journal = Current Opinion in Chemical Biology | volume = 2 | issue = | pages = 155–158 | doi = 10.1016/S1367-5931(98)80056-2 }}</ref>。据另一个估计,大约四分之一到三分之一的所有蛋白质被提议要求有金属执行其功能<ref>{{cite journal |last1=Waldron |first1=K.&nbsp;J. |last2=Robinson |first2=N.&nbsp;J. |title=How do bacterial cells ensure that metalloproteins get the correct metal? |journal=Nat. Rev. Microbiol. |volume=7 |issue=1 |pages=25–35 |date=January 2009 |pmid=19079350 |doi=10.1038/nrmicro2057}}</ref>。因此,金属蛋白在[[细胞]]中具有许多不同的功能,例如蛋白质的储存和运输,[[酶]]和[[訊息傳遞 (生物)|信号转导]]蛋白。金属离子在感染性疾病中的作用已经被审查<ref>{{cite book|last1=Carver |first1=Peggy L. |editor1-last=Sigel |editor1-first=Astrid |editor2-last=Sigel |editor2-first=Helmut |editor3-last=Sigel |editor3-first=Roland K.&nbsp;O. |title=Interrelations between Essential Metal Ions and Human Diseases |series=Metal Ions in Life Sciences |volume=13 |year=2013 |publisher=Springer |pages=1–28 |chapter=Chapter 1. Metal Ions and Infectious Diseases. An Overview from the Clinic |doi=10.1007/978-94-007-7500-8_1}}</ref>。

==配位化学原理==
==配位化学原理==
==存储与运输相关金属蛋白==
==存储与运输相关金属蛋白==

2016年11月10日 (四) 05:50的版本

血红蛋白的结构。含有血红素辅因子,以绿色显示。

金属蛋白(英語:Metalloprotein)是一类含有配位结合的金属离子作为辅因子结合蛋白质[1][2]。所有蛋白质中有大量是属于这一类。

这是一类非常重要的蛋白质,在细胞中有多种不同的功能,包括作为运输蛋白贮存蛋白信号转导蛋白等。其中的金属离子一般是与多肽链上氨基酸残基中的氮、氧或硫原子或与蛋白质相结合的大环配体相配位。由于金属离子的特殊氧化还原性质,金属酶常用作催化生氧化还原反应的催化剂。

功能

据估计,所有蛋白质中有大约一半含有金属[3]。据另一个估计,大约四分之一到三分之一的所有蛋白质被提议要求有金属执行其功能[4]。因此,金属蛋白在细胞中具有许多不同的功能,例如蛋白质的储存和运输,信号转导蛋白。金属离子在感染性疾病中的作用已经被审查[5]

配位化学原理

存储与运输相关金属蛋白

氧载体

细胞色素

红氧还蛋白

铁硫蛋白的活性位点

質體藍素

質體藍素中铜离子的所在位置

金属离子储存与转运

铁离子

铜离子

金属酶

碳酸酐酶

Active site of carbonic anhydrase. The three coordinating histidine residues are shown in green, hydroxide in red and white, and the zinc in gray.

维生素B12依赖酶

固氮酶

超氧化物歧化酶

超氧化物歧化酶2四聚体的结构

叶绿素结合蛋白

氢化酶

三种氢化酶和它们的金属活性中心的结构:(A)镍铁类, (B)双铁类和(C)单铁类

核酶、脱氧核酶

其它金属酶

There are two types of 一氧化碳脱氢酶: one contains copper and molybdenum, the other contains nickel and iron. Parallels and differences in catalytic strategies have been reviewed.[6] Some other metalloenzymes are given in the following table, according to the metal involved.

Ion Examples of enzymes containing this ion
Magnesium[7] Glucose 6-phosphatase
Hexokinase
DNA polymerase
Vanadium vanabins
Manganese[8] Arginase
Iron[9] Catalase
Hydrogenase
IRE-BP
Aconitase
Cobalt[10] Nitrile hydratase
Methionyl aminopeptidase
Methylmalonyl-CoA mutase
Isobutyryl-CoA mutase
Nickel[11][12] Urease
Hydrogenase
Methyl-coenzyme M reductase (MCR)
Copper[13] Cytochrome oxidase
Laccase
Nitrous-oxide reductase
Nitrite reductase
Zinc[14] Alcohol dehydrogenase
Carboxypeptidase
Aminopeptidase
Beta amyloid
Cadmium[15][16] Metallothionein
thiolate proteins
Molybdenum[17] Nitrate reductase
Sulfite oxidase
Xanthine oxidase
DMSO reductase
Tungsten[18] Acetylene hydratase
various Metallothionein
Phosphatase

信号转导相关金属蛋白

钙调素

EF手结构基序

肌钙蛋白

转录因子

Zinc finger. The zinc ion (green) is coordinated by two histidine residues and two cysteine residues.

例子

参考文献

  1. ^ Banci, Lucia. Sigel, Astrid; Sigel, Helmut; Sigel, Roland K. O. , 编. Metallomics and the Cell. Springer. 2013. ISBN 978-94-007-5561-1. ISSN 1868-0402. 
  2. ^ Shriver, D. F.; Atkins, P. W. Chapter 19, Bioinorganic chemistry. Inorganic chemistry 3rd. Oxford University Press. 1999. ISBN 0-19-850330-X. 
  3. ^ Thomson, A. J.; Gray, H. B. Bioinorganic chemistry. Current Opinion in Chemical Biology. 1998, 2: 155–158. doi:10.1016/S1367-5931(98)80056-2. 
  4. ^ Waldron, K. J.; Robinson, N. J. How do bacterial cells ensure that metalloproteins get the correct metal?. Nat. Rev. Microbiol. January 2009, 7 (1): 25–35. PMID 19079350. doi:10.1038/nrmicro2057. 
  5. ^ Carver, Peggy L. Chapter 1. Metal Ions and Infectious Diseases. An Overview from the Clinic. Sigel, Astrid; Sigel, Helmut; Sigel, Roland K. O. (编). Interrelations between Essential Metal Ions and Human Diseases. Metal Ions in Life Sciences 13. Springer. 2013: 1–28. doi:10.1007/978-94-007-7500-8_1. 
  6. ^ Jeoung, Jae-Hun; Fesseler, Jochen; Goetzl, Sebastian; Dobbek, Holger. Chapter 3. Carbon Monoxide. Toxic Gas and Fuel for Anaerobes and Aerobes: Carbon Monoxide Dehydrogenases. Peter M.H. Kroneck and Martha E. Sosa Torres (编). The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment. Metal Ions in Life Sciences 14. Springer. 2014: 37–69. doi:10.1007/978-94-017-9269-1_3. 
  7. ^ Romani, Andrea M.P. Chapter 4 Magnesium Homeostasis in Mammalian Cells. Banci, Lucia (Ed.) (编). Metallomics and the Cell. Metal Ions in Life Sciences 12. Springer. 2013. ISBN 978-94-007-5560-4. doi:10.1007/978-94-007-5561-1_4.  electronic-book ISBN 978-94-007-5561-1 ISSN 1559-0836 electronic-ISSN 1868-0402
  8. ^ Roth, Jerome; Ponzoni, Silvia; Aschner, Michael. Chapter 6 Manganese Homeostasis and Transport. Banci, Lucia (Ed.) (编). Metallomics and the Cell. Metal Ions in Life Sciences 12. Springer. 2013. ISBN 978-94-007-5560-4. doi:10.1007/978-94-007-5561-1_6.  electronic-book ISBN 978-94-007-5561-1 ISSN 1559-0836 electronic-ISSN 1868-0402
  9. ^ Dlouhy, Adrienne C.; Outten, Caryn E. Chapter 8 The Iron Metallome in Eukaryotic Organisms. Banci, Lucia (Ed.) (编). Metallomics and the Cell. Metal Ions in Life Sciences 12. Springer. 2013. ISBN 978-94-007-5560-4. doi:10.1007/978-94-007-5561-1_8.  electronic-book ISBN 978-94-007-5561-1 ISSN 1559-0836 electronic-ISSN 1868-0402
  10. ^ Cracan, Valentin; Banerjee, Ruma. Chapter 10 Cobalt and Corrinoid Transport and Biochemistry. Banci, Lucia (Ed.) (编). Metallomics and the Cell. Metal Ions in Life Sciences 12. Springer. 2013. ISBN 978-94-007-5560-4. doi:10.1007/978-94-007-5561-10_10.  electronic-book ISBN 978-94-007-5561-1 ISSN 1559-0836 electronic-ISSN 1868-0402
  11. ^ Astrid Sigel, Helmut Sigel and Roland K.O. Sigel (编). Nickel and Its Surprising Impact in Nature. Metal Ions in Life Sciences 2. Wiley. 2008. ISBN 978-0-470-01671-8. 
  12. ^ Sydor, Andrew M.; Zambie, Deborah B. Chapter 11 Nickel Metallomics: General Themes Guiding Nickel Homeostasis. Banci, Lucia (Ed.) (编). Metallomics and the Cell. Metal Ions in Life Sciences 12. Springer. 2013. ISBN 978-94-007-5560-4. doi:10.1007/978-94-007-5561-10_11.  electronic-book ISBN 978-94-007-5561-1 ISSN 1559-0836 electronic-ISSN 1868-0402
  13. ^ Vest, Katherine E.; Hashemi, Hayaa F.; Cobine, Paul A. Chapter 13 The Copper Metallome in Eukaryotic Cells. Banci, Lucia (Ed.) (编). Metallomics and the Cell. Metal Ions in Life Sciences 12. Springer. 2013. ISBN 978-94-007-5560-4. doi:10.1007/978-94-007-5561-10_12.  electronic-book ISBN 978-94-007-5561-1 ISSN 1559-0836 electronic-ISSN 1868-0402
  14. ^ Maret, Wolfgang. Chapter 14 Zinc and the Zinc Proteome. Banci, Lucia (Ed.) (编). Metallomics and the Cell. Metal Ions in Life Sciences 12. Springer. 2013. ISBN 978-94-007-5560-4. doi:10.1007/978-94-007-5561-10_14.  electronic-book ISBN 978-94-007-5561-1 ISSN 1559-0836 electronic-ISSN 1868-0402
  15. ^ Peackock, Anna F.A.; Pecoraro, Vincent. Chapter 10. Natural and artificial proteins containing cadmium. Astrid Sigel, Helmut Sigel and Roland K. O. Sigel (编). Cadmium: From Toxicology to Essentiality. Metal Ions in Life Sciences 11. Springer. 2013: 303–337. doi:10.1007/978-94-007-5179-8_10. 
  16. ^ Freisinger, Elsa F.A.; Vasac, Milan. Chapter 11. Cadmium in Metallothioneins. Astrid Sigel, Helmut Sigel and Roland K. O. Sigel (编). Cadmium: From Toxicology to Essentiality. Metal Ions in Life Sciences 11. Springer. 2013: 339–372. doi:10.1007/978-94-007-5179-8_11. 
  17. ^ Mendel, Ralf R. Chapter 15 Metabolism of Molybdenum. Banci, Lucia (Ed.) (编). Metallomics and the Cell. Metal Ions in Life Sciences 12. Springer. 2013. ISBN 978-94-007-5560-4. doi:10.1007/978-94-007-5561-10_15.  electronic-book ISBN 978-94-007-5561-1 ISSN 1559-0836 electronic-ISSN 1868-0402
  18. ^ ten Brink, Felix. Chapter 2. Living on acetylene. A Primordial Energy Source. Peter M.H. Kroneck and Martha E. Sosa Torres (编). The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment. Metal Ions in Life Sciences 14. Springer. 2014: 15–35. doi:10.1007/978-94-017-9269-1_2.