自噬:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
InternetArchiveBot留言 | 贡献
补救0个来源,并将1个来源标记为失效。 #IABot (v1.6.5)
內容擴充,翻譯自英文維基百科
第1行: 第1行:
[[File:Autophagy diagram PLoS Biology.jpg|thumb|right|(A) 自噬示意; (B) 果的脂肪自噬結構照片; (C) 標記的自噬體飢餓小鼠肝胞]]
{{expert|time=2014-01-13T19:05:46+00:00}}
{{Expand |time=2011-09-15T06:38:23+00:00 }}


'''自噬'''({{lang-en|Autophagy}},或'''自吞噬''')是一涉及到[[胞]]自身結構[[溶酶]]制而被[[分解代|分解]]的程。是一受到調控的步,此步胞生、[[胞分化|育]][[穩態]]中的常,它物在合成、降解以及接下的循中保持一平衡狀態
[[File:Autophagy diagram PLoS Biology.jpg|thumb|right|(A) 自噬示意; (B) 果的脂肪自噬结构照片; (C) 标记的自噬体饥饿小鼠肝.]]


命名为“自噬”({{lang-en|Autophagy}})是由比利家[[克里斯汀·德·迪夫]]在1963年發現的<ref name=klionsky>{{cite journal |pmid= 18567941 |year= 2008 |last1= Klionsky |first1= DJ |title= Autophagy revisited: A conversation with Christian de Duve |volume= 4 |issue= 6 |pages= 740–3 |journal= Autophagy |doi=10.4161/auto.6398}}</ref>。代的自噬研究是1990年代酵母的研究人過識別的自噬相基因而被推<ref name="klionsky 1992">{{cite journal|pmid=1400574|title=Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway|journal=Journal of Cell Biology|date=October 1992|volume=119|issue=2|page=287-99|}}</ref><ref name="ohsumi 1992">{{cite journal|pmid=1400575|title=Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction|journal=Journal of Cell Biology|date=October 1992|volume=119|issue=2|page=301-11|}}</ref><ref name="thumm 1994">{{cite journal|title=Isolation of autophagocytosis mutants of Saccharomyces cerevisiae|journal=FEBS Letters|date=August 1994|volume=349|issue=2|page=275-80|pmid=8050581}}</ref><ref name="ohsumi 1993">{{cite journal|title=Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae|journal=FEBS Letters|date=October 1993|volume=333|issue=1-2|page=169-74|pmid=8224160}}</ref><ref name="klionsky 1995">{{cite journal|title=Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway|journal=Journal of Cell Biology|date=November 1995|volume=131|issue=3|page=591-602|pmid=7593182}}</ref>。其中之一人,日本科學家[[大隅良典]]因“對細胞自噬機制的發現”獲得2016年度的[[诺贝尔生理学或医学奖]]<ref name="nobel-2016">{{cite web|url=http://www.nobelprize.org/nobel_prizes/medicine/laureates/2016/|title=The Nobel Prize in Physiology or Medicine 2016|publisher=Nobel Foundation|accessdate=3 October 2016}}</ref>。
'''自噬<ref>[http://www.term.gov.cn/pages/homepage/result2.jsp?id=318203&subid=10001801&subject=%E7%BB%86%E8%83%9E%E7%94%9F%E7%90%86&subsys=%E7%BB%86%E8%83%9E%E7%94%9F%E7%89%A9%E5%AD%A6]{{dead link|date=2018年4月 |bot=InternetArchiveBot |fix-attempted=yes }}</ref>'''({{lang-en|Autophagy}},或'''自吞噬''')是一涉及到[[胞]]自身结构[[溶酶]]制而被[[分解代|分解]]的程。是一受到控的步,此步[[细胞生长]]、[[胞分化|育]][[稳态]]中的常,它物在合成、降解以及接下的循中保持一平衡状态


==歷史==
命名为“自噬”({{lang-en|Autophagy}})是由比利家[[克里斯汀·德·迪夫]]在1963年發現的<ref name=klionsky>{{cite journal |pmid= 18567941 |year= 2008 |last1= Klionsky |first1= DJ |title= Autophagy revisited: A conversation with Christian de Duve |volume= 4 |issue= 6 |pages= 740–3 |journal= Autophagy |doi=10.4161/auto.6398}}</ref>。代的自噬研究是1990年代酵母的研究人过识别的自噬相基因而被推<ref name="klionsky 1992">{{cite journal|pmid=1400574|title=Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway|journal=Journal of Cell Biology|date=October 1992|volume=119|issue=2|page=287-99|}}</ref><ref name="ohsumi 1992">{{cite journal|pmid=1400575|title=Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction|journal=Journal of Cell Biology|date=October 1992|volume=119|issue=2|page=301-11|}}</ref><ref name="thumm 1994">{{cite journal|title=Isolation of autophagocytosis mutants of Saccharomyces cerevisiae|journal=FEBS Letters|date=August 1994|volume=349|issue=2|page=275-80|pmid=8050581}}</ref><ref name="ohsumi 1993">{{cite journal|title=Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae|journal=FEBS Letters|date=October 1993|volume=333|issue=1-2|page=169-74|pmid=8224160}}</ref><ref name="klionsky 1995">{{cite journal|title=Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway|journal=Journal of Cell Biology|date=November 1995|volume=131|issue=3|page=591-602|pmid=7593182}}</ref>。其中之一人,日本科學家[[大隅良典]]因“對細胞自噬機制的發現”獲得2016年度的[[诺贝尔生理学或医学奖]]<ref name="nobel-2016">{{cite web|url=http://www.nobelprize.org/nobel_prizes/medicine/laureates/2016/|title=The Nobel Prize in Physiology or Medicine 2016|publisher=Nobel Foundation|accessdate=3 October 2016}}</ref>。
1962年1月,[[洛克菲勒大學|洛克菲勒醫學研究院]]的{{le|Keith R. Porter|Keith R. Porter}}和他的學生Thomas Ashford報導了添加[[胰高血糖素]]後,[[大鼠]][[肝]]細胞中的溶酶體數量增加,並且發現一些向細胞中心移位的溶酶體,包含着[[線粒體]]等細胞器的成分。Porter和Ashford錯誤地將其數據解釋為溶酶體的形成過程,不認為溶酶體是像線粒體一樣是存在於[[細胞質]]中的[[細胞器]],並且將觀察到的[[水解酶]]理解為是由{{le|微體|Microbody}}產生的水解酶<ref>{{cite journal | vauthors = Ashford TP, Porter KR | title = Cytoplasmic components in hepatic cell lysosomes | journal = The Journal of Cell Biology | volume = 12 | issue = 1 | pages = 198–202 | date = January 1962 | pmid = 13862833 | pmc = 2106008 | doi = 10.1083/jcb.12.1.198 }}</ref>。


1963年,赫魯班(Hruban)、Spargo及其同事等報道了局部細胞質降解的超微結構,該報道參考了1955年德國科學家的損傷誘導融合[[模型]],觀察到了從細胞質融合到生成溶酶體的三個連續步驟,並提出這個過程不僅由損傷階段誘發,而且在細胞分化的生理階段,同樣的過程也在「細胞器處置」和「細胞成分再利用」中行使功能<ref>{{cite journal | vauthors = Hruban Z, Spargo B, Swift H, Wissler RW, Kleinfeld RG | title = Focal cytoplasmic degradation | journal = The American Journal of Pathology | volume = 42 | issue = 6 | pages = 657–83 | date = June 1963 | pmid = 13955261 | pmc = 1949709 }}</ref>。這篇報道引起了當時也在洛克菲勒醫學研究所工作的[[克里斯汀·德·迪夫]]的興趣,與之前Porter和Ashford的看法不同,德迪夫受到這一發現的啟發,把這種現象命名為自噬(autophagy),並提出在胰高血糖素引發的肝細胞降解過程中,溶酶體發揮了功能。他與其[[學生]]拉塞爾·德特(Russell Deter)一起證實胰高血糖素誘發的自噬是由溶酶體介導的<ref>{{cite journal | vauthors = Deter RL, Baudhuin P, De Duve C | title = Participation of lysosomes in cellular autophagy induced in rat liver by glucagon | journal = The Journal of Cell Biology | volume = 35 | issue = 2 | pages = C11–6 | date = November 1967 | pmid = 6055998 | pmc = 2107130 | doi = 10.1083/jcb.35.2.c11 }}</ref><ref>{{cite journal | vauthors = Deter RL, De Duve C | title = Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes | journal = The Journal of Cell Biology | volume = 33 | issue = 2 | pages = 437–49 | date = May 1967 | pmid = 4292315 | pmc = 2108350 | doi = 10.1083/jcb.33.2.437 }}</ref>,並且在1967年連續發表兩篇文章,他也由此成為第一位報道溶酶體參與細胞內自噬的[[科學家]]。這是首次確定溶酶體是細胞內自噬的部位<ref name="klionsky" /><ref>{{cite journal | vauthors = de Duve C | title = Lysosomes revisited | journal = European Journal of Biochemistry | volume = 137 | issue = 3 | pages = 391–7 | date = December 1983 | pmid = 6319122 | doi = 10.1111/j.1432-1033.1983.tb07841.x }}</ref><ref>{{cite book | first1 = William A. | last1 = Dunn | first2 = Laura A. | last2 = Schroder | first3 = John P. | last3 = Aris | name-list-format = vanc | chapter = Historical overview of autophagy |editor-first = Hong-Gang | editor-last = Wang |title= Autophagy and Cancer|year= 2013 | chapter-url= https://books.google.com/books?id=nXpDAAAAQBAJ&dq |pages= 3–4 | publisher= Springer |isbn= 9781461465614}}</ref>。1974年德迪夫發現細胞內結構及功能性器官,即溶酶體和[[過氧物酶體]],而與另外兩位科學家共享了該年度的[[諾貝爾生理學或醫學獎]]。
==参阅==
* {{le|自噬数据库|Autophagy database}}


在1990年代,幾組科學家使用發芽[[酵母]]獨立地發現了自噬相關[[基因]]。值得注意的是,大隅良典(他於2016年獲得了諾貝爾生理學或醫學獎 ,儘管有人指出該獎項可能更具包容性<ref name="nature news">{{cite journal | vauthors = Van Noorden R, Ledford H | title = Medicine Nobel for research on how cells 'eat themselves' | journal = Nature | volume = 538 | issue = 7623 | pages = 18–19 | date = October 2016 | pmid = 27708326 | doi = 10.1038/nature.2016.20721 | bibcode = 2016Natur.538...18V }}</ref>)和Michael Thumm研究了[[飢餓]]誘導的非選擇性自噬<ref name="ohsumi 1992" /><ref name="thumm 1994" /><ref name="ohsumi 1993" />。同時,Daniel J Klionsky發現了細胞質-真空定向(CVT)途徑,這是選擇性自噬的一種形式<ref name="klionsky 1992" /><ref name="klionsky 1995"/>。他們很快發現他們實際上是在從不同的角度看本質上相同的路徑<ref name="klionksy 1996 jbc">{{cite journal | vauthors = Harding TM, Hefner-Gravink A, Thumm M, Klionsky DJ | title = Genetic and phenotypic overlap between autophagy and the cytoplasm to vacuole protein targeting pathway | journal = The Journal of Biological Chemistry | volume = 271 | issue = 30 | pages = 17621–4 | date = July 1996 | pmid = 8663607 | doi = 10.1074/jbc.271.30.17621 }}</ref><ref name="klionsky 1996 pnas">{{cite journal | vauthors = Scott SV, Hefner-Gravink A, Morano KA, Noda T, Ohsumi Y, Klionsky DJ | title = Cytoplasm-to-vacuole targeting and autophagy employ the same machinery to deliver proteins to the yeast vacuole | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 93 | issue = 22 | pages = 12304–8 | date = October 1996 | pmid = 8901576 | pmc = 37986 | doi = 10.1073/pnas.93.22.12304 | bibcode = 1996PNAS...9312304S }}</ref>。最初,由酵母菌組發現的基因被賦予不同的名稱(APG、AUT、CVT、GSA、PAG、PAZ和PDD)。2003年,有[[研究員|研究人員]]提出了統一的命名法,即使用ATG表示自噬基因<ref name="klionsky 2003 dc">{{cite journal | vauthors = Klionsky DJ, Cregg JM, Dunn WA, Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, Ohsumi Y | title = A unified nomenclature for yeast autophagy-related genes | journal = Developmental Cell | volume = 5 | issue = 4 | pages = 539–45 | date = October 2003 | pmid = 14536056 | doi = 10.1016/s1534-5807(03)00296-x }}</ref> 。
==考文==

21世紀初,自噬研究領域經歷快速的發展。 ATG基因的知識為科學家提供了更方便的工具,以分析自噬在人類健康和疾病中的功能。1999年,貝絲·萊文(Beth Levine)的小組發表了一項具有里程碑意義的發現<ref name="levine 1999">{{cite journal | vauthors = Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B | title = Induction of autophagy and inhibition of tumorigenesis by beclin 1 | journal = Nature | volume = 402 | issue = 6762 | pages = 672–6 | date = December 1999 | pmid = 10604474 | doi = 10.1038/45257 | bibcode = 1999Natur.402..672L }}</ref> ,將自噬與[[癌症]]聯繫起來。迄今為止,癌症與自噬之間的關係仍然是自噬研究的主要主題。自噬在神經退行性變和免疫防禦中的作用也受到了廣泛的關注。2003年,第一屆戈登自噬研究會議(Gordon Research Conference on autophagy)在沃特維爾舉行<ref name="gordon 2003">{{cite web|title=Autophagy in Stress, Development & Disease, 2003, Gordon Research Conference|url=https://www.grc.org/programs.aspx?id=10449}}</ref>。2005年,Daniel J Klionsky發行了致力於該領域的科學期刊《自噬》。2007年,首屆Keystone自噬專題討論會在蒙特里舉行<ref name="keystone 2007">{{cite web|title=Autophagy in Health and Disease (Z3), 2007, Keystone Symposia on Molecular and Cellular Biology|url=http://www.keystonesymposia.org/index.cfm?e=web.Meeting.Program&meetingid=838}}</ref>。2008年,Carol A Mercer創建了BHMT融合蛋白(GST-BHMT),該蛋白在{{le|細胞系|Immortalised cell line}}中顯示飢餓誘導的位點特異性片段化。{{le|甜菜鹼高半胱氨酸甲基轉移酶|Betaine—homocysteine S-methyltransferase}}的降解是一種可用於評估哺乳動物細胞中自噬通量的代謝酶。

巨自噬作用、{{le|微自噬作用|Microautophagy}}和{{le|伴侶分子介導自噬作用|Chaperone-mediated autophagy}}由自噬相關基因及其相關酶介導<ref name=Lee12>{{cite journal | vauthors = Lee J, Giordano S, Zhang J | title = Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling | journal = The Biochemical Journal | volume = 441 | issue = 2 | pages = 523–40 | date = January 2012 | pmid = 22187934 | pmc = 3258656 | doi = 10.1042/BJ20111451 }}</ref><ref name=Yoshimori2002>{{cite journal | vauthors = Mizushima N, Ohsumi Y, Yoshimori T | title = Autophagosome formation in mammalian cells | journal = Cell Structure and Function | volume = 27 | issue = 6 | pages = 421–9 | date = December 2002 | pmid = 12576635 | doi = 10.1247/csf.27.421 }}</ref><ref name="auto">{{cite journal | vauthors = Youle RJ, Narendra DP | title = Mechanisms of mitophagy | journal = Nature Reviews. Molecular Cell Biology | volume = 12 | issue = 1 | pages = 9–14 | date = January 2011 | pmid = 21179058 | pmc = 4780047 | doi = 10.1038/nrm3028 }}</ref> 。巨自噬作用細為本體自噬和選擇性自噬(bulk and selective autophagy)。在選擇性自噬中,又細分為{{le|線粒體自噬作用|Mitophagy}}<ref>{{cite journal | vauthors = Ding WX, Yin XM | title = Mitophagy: mechanisms, pathophysiological roles, and analysis | journal = Biological Chemistry | volume = 393 | issue = 7 | pages = 547–64 | date = July 2012 | pmid = 22944659 | pmc = 3630798 | doi = 10.1515/hsz-2012-0119 }}</ref>、脂自噬作用、[[過氧化物酶體]]自噬作用<ref>{{cite journal | vauthors = Till A, Lakhani R, Burnett SF, Subramani S | title = Pexophagy: the selective degradation of peroxisomes | journal = International Journal of Cell Biology | volume = 2012 | pages = 512721 | date = 2012 | pmid = 22536249 | pmc = 3320016 | doi = 10.1155/2012/512721 }}</ref>、[[葉綠體]]自噬作用<ref>{{cite journal | vauthors = Lei L | title = Chlorophagy: Preventing sunburn | journal = Nature Plants | volume = 3 | issue = 3 | pages = 17026 | date = March 2017 | pmid = 28248315 | doi = 10.1038/nplants.2017.26 }}</ref> 及[[核糖體]]自噬作用<ref>{{cite journal | vauthors = An H, Harper JW | title = Systematic analysis of ribophagy in human cells reveals bystander flux during selective autophagy | journal = Nature Cell Biology | volume = 20 | issue = 2 | pages = 135–143 | date = February 2018 | pmid = 29230017 | pmc = 5786475 | doi = 10.1038/s41556-017-0007-x }}</ref>等。

*'''巨自噬作用'''是主要的自噬途徑,主要用於清除受損的細胞器或未被使用的蛋白質<ref name=Levine11>{{cite journal | vauthors = Levine B, Mizushima N, Virgin HW | title = Autophagy in immunity and inflammation | journal = Nature | volume = 469 | issue = 7330 | pages = 323–35 | date = January 2011 | pmid = 21248839 | pmc = 3131688 | doi = 10.1038/nature09782 | bibcode = 2011Natur.469..323L }}</ref>。首先,吞噬細胞將需要降解的物質吞噬,並在受損的[[細胞器]]周圍形成[[自噬體]]<ref name=Pegan12>{{cite journal | vauthors = Česen MH, Pegan K, Spes A, Turk B | title = Lysosomal pathways to cell death and their therapeutic applications | journal = Experimental Cell Research | volume = 318 | issue = 11 | pages = 1245–51 | date = July 2012 | pmid = 22465226 | doi = 10.1016/j.yexcr.2012.03.005 | url = https://zenodo.org/record/3423460 }}</ref>。然後自噬體穿過細胞的細胞質到達溶酶體,兩個細胞器融合。在溶酶體內,自噬體內的內容物通過[[酸性]]溶酶體水解酶降解<ref name=Homma2011>{{Cite journal |archive-url=https://web.archive.org/web/20120801130843/http://tp-apg.genes.nig.ac.jp/autophagy/list/GeneList.html|archive-date=2012-08-01| url = http://tp-apg.genes.nig.ac.jp/autophagy/list/GeneList.html | year = 2011 | author = Homma, K.S. | title = List of autophagy-related proteins and 3D structures | journal = Autophagy Database | volume = 290 | access-date = 2012-10-08 }}</ref> 。

*'''微自噬作用'''涉及將細胞質內的[[物質]]直接吞噬到溶酶體中<ref>{{Cite journal | title = The Discovery of Lysosomes and Autophagy | journal = Nature Education | page = 49 | volume = 3 | year = 2010 | last = Castro-Obregon|first = Susana|issue =9|url = https://www.nature.com/scitable/topicpage/the-discovery-of-lysosomes-and-autophagy-14199828}}</ref>。這是通過內陷發生的,意味著溶酶體膜向內折疊或細胞向外突出<ref name=Pegan12/> 。

*'''伴侶分子介導自噬作用'''(CMA)是一個非常複雜和特異的途徑,涉及到包含hsc70的複合物的識別<ref name=Pegan12/><ref name=Cuervo2008>{{cite journal | vauthors = Bandyopadhyay U, Kaushik S, Varticovski L, Cuervo AM | title = The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane | journal = Molecular and Cellular Biology | volume = 28 | issue = 18 | pages = 5747–63 | date = September 2008 | pmid = 18644871 | pmc = 2546938 | doi = 10.1128/MCB.02070-07 }}</ref><ref name=Cuervo2008>{{cite journal | vauthors = Bandyopadhyay U, Kaushik S, Varticovski L, Cuervo AM | title = The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane | journal = Molecular and Cellular Biology | volume = 28 | issue = 18 | pages = 5747–63 | date = September 2008 | pmid = 18644871 | pmc = 2546938 | doi = 10.1128/MCB.02070-07 }}</ref>。這意味著蛋白質必須包含hsc70複合物的識別位點,這將使其能夠與該分子伴侶結合,形成CMA-底物/分子伴侶複合物。然後,該複合物移動到溶酶體膜結合蛋白上,該蛋白將識別並與CMA受體結合。底物蛋白在識別後就解折疊,並在溶酶體hsc70分子伴侶的幫助下,跨越溶酶體膜轉運。CMA與其他類型的自噬存在顯著差異,因為它以一種一種的方式轉運蛋白物質,並且對哪種物質穿過溶酶體屏障具有極高的選擇性<ref name=Levine11/>。

*'''線粒體自噬作用'''是通過自噬選擇性地降解[[線粒體]]。經歷損傷或受壓後,經常發生線粒體缺陷。線粒體吞噬作用促進線粒體的更新,並且防止功能異常的線粒體積聚,從而導致細胞變性。它是由酵母中的Atg3、NIX及其調節物BNIP3在哺乳動物中介導的。線粒體吞噬作用受到PINK1和parkin蛋白的調節。線粒體吞噬作用的發生不僅限於線粒體受損,還包括未受損的線粒體。

*'''脂自噬作用'''是通過自噬降解[[脂質]]<ref name=":1">{{cite journal | vauthors = Liu K, Czaja MJ | title = Regulation of lipid stores and metabolism by lipophagy | journal = Cell Death and Differentiation | volume = 20 | issue = 1 | pages = 3–11 | date = January 2013 | pmid = 22595754 | doi = 10.1038/cdd.2012.63 | pmc = 3524634 }}</ref>,該功能在[[動物]]和[[真菌]]細胞中都存在<ref>{{cite journal | vauthors = Ward C, Martinez-Lopez N, Otten EG, Carroll B, Maetzel D, Singh R, Sarkar S, Korolchuk VI | title = Autophagy, lipophagy and lysosomal lipid storage disorders | journal = Biochimica et Biophysica Acta | volume = 1861 | issue = 4 | pages = 269–84 | date = April 2016 | pmid = 26778751 | doi = 10.1016/j.bbalip.2016.01.006 }}</ref>。然而,脂肪吞噬作用在植物細胞中的作用仍然難以捉摸<ref>{{cite journal | vauthors = Elander PH, Minina EA, Bozhkov PV | title = Autophagy in turnover of lipid stores: trans-kingdom comparison | journal = Journal of Experimental Botany | volume = 69 | issue = 6 | pages = 1301–1311 | date = March 2018 | pmid = 29309625 | doi = 10.1093/jxb/erx433 }}</ref>。在脂質吞噬中,靶標是稱為脂質滴(LDs)的脂質結構,具有主要是三酰基甘油(TAGs)核心,以及單層磷脂和膜蛋白組成的球形細胞器。在動物細胞中,主要的脂肪吞噬途徑是通過吞噬細胞吞噬LD,即巨自噬。另一方面,在真菌細胞中,微脂代謝是主要途徑,尤其是在發芽酵母及釀酒酵母中得到了很好的研究<ref>{{cite journal | vauthors = van Zutphen T, Todde V, de Boer R, Kreim M, Hofbauer HF, Wolinski H, Veenhuis M, van der Klei IJ, Kohlwein SD | title = Lipid droplet autophagy in the yeast Saccharomyces cerevisiae | journal = Molecular Biology of the Cell | volume = 25 | issue = 2 | pages = 290–301 | date = January 2014 | pmid = 24258026 | pmc = 3890349 | doi = 10.1091/mbc.E13-08-0448 }}</ref>。脂吞噬作用最早在小鼠中發現,並且在2009年發表<ref>{{cite journal | vauthors = Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ | title = Autophagy regulates lipid metabolism | journal = Nature | volume = 458 | issue = 7242 | pages = 1131–5 | date = April 2009 | pmid = 19339967 | pmc = 2676208 | doi = 10.1038/nature07976 | bibcode = 2009Natur.458.1131S }}</ref>。

==參閱==
* {{le|自噬數據庫|Autophagy database}}

==考文==
{{reflist|2}}
{{reflist|2}}


==外部接==
==外部接==
*{{En}}[http://www.landesbioscience.com/journals/autophagy/ ''Autophagy'', a journal produced by Landes Bioscience and edited by DJ Klionsky]
*{{En}}[http://www.landesbioscience.com/journals/autophagy/ ''Autophagy'', a journal produced by Landes Bioscience and edited by DJ Klionsky]
*{{En}}[https://web.archive.org/web/20060926123218/http://www.longevitymeme.org/news/view_news_item.cfm?news_id=2668 LongevityMeme entry describing PubMed article on the effects of autophagy and lifespan]
*{{En}}[https://web.archive.org/web/20060926123218/http://www.longevitymeme.org/news/view_news_item.cfm?news_id=2668 LongevityMeme entry describing PubMed article on the effects of autophagy and lifespan]

2020年1月20日 (一) 10:01的版本

(A) 自噬示意圖; (B) 果蠅幼蟲的脂肪體自噬結構的電子顯微鏡照片; (C) 螢光標記的自噬體飢餓小鼠肝細胞

自噬(英語:Autophagy,或稱自體吞噬)是一個涉及到細胞自身結構通過溶酶體機制而被分解的過程。這是一個受到緊密調控的步驟,此步驟是細胞生長、發育穩態中的常規步驟,它幫助細胞產物在合成、降解以及接下來的循環中保持一個平衡狀態。

命名为“自噬”(英語:Autophagy)是由比利時化學家克里斯汀·德·迪夫在1963年發現的[1]。當代的自噬研究是1990年代酵母的研究人員通過識別的自噬相關基因而被推動[2][3][4][5][6]。其中之一人,日本科學家大隅良典因“對細胞自噬機制的發現”獲得2016年度的诺贝尔生理学或医学奖[7]

歷史

1962年1月,洛克菲勒醫學研究院Keith R. Porter英语Keith R. Porter和他的學生Thomas Ashford報導了添加胰高血糖素後,大鼠細胞中的溶酶體數量增加,並且發現一些向細胞中心移位的溶酶體,包含着線粒體等細胞器的成分。Porter和Ashford錯誤地將其數據解釋為溶酶體的形成過程,不認為溶酶體是像線粒體一樣是存在於細胞質中的細胞器,並且將觀察到的水解酶理解為是由微體英语Microbody產生的水解酶[8]

1963年,赫魯班(Hruban)、Spargo及其同事等報道了局部細胞質降解的超微結構,該報道參考了1955年德國科學家的損傷誘導融合模型,觀察到了從細胞質融合到生成溶酶體的三個連續步驟,並提出這個過程不僅由損傷階段誘發,而且在細胞分化的生理階段,同樣的過程也在「細胞器處置」和「細胞成分再利用」中行使功能[9]。這篇報道引起了當時也在洛克菲勒醫學研究所工作的克里斯汀·德·迪夫的興趣,與之前Porter和Ashford的看法不同,德迪夫受到這一發現的啟發,把這種現象命名為自噬(autophagy),並提出在胰高血糖素引發的肝細胞降解過程中,溶酶體發揮了功能。他與其學生拉塞爾·德特(Russell Deter)一起證實胰高血糖素誘發的自噬是由溶酶體介導的[10][11],並且在1967年連續發表兩篇文章,他也由此成為第一位報道溶酶體參與細胞內自噬的科學家。這是首次確定溶酶體是細胞內自噬的部位[1][12][13]。1974年德迪夫發現細胞內結構及功能性器官,即溶酶體和過氧物酶體,而與另外兩位科學家共享了該年度的諾貝爾生理學或醫學獎

在1990年代,幾組科學家使用發芽酵母獨立地發現了自噬相關基因。值得注意的是,大隅良典(他於2016年獲得了諾貝爾生理學或醫學獎 ,儘管有人指出該獎項可能更具包容性[14])和Michael Thumm研究了飢餓誘導的非選擇性自噬[3][4][5]。同時,Daniel J Klionsky發現了細胞質-真空定向(CVT)途徑,這是選擇性自噬的一種形式[2][6]。他們很快發現他們實際上是在從不同的角度看本質上相同的路徑[15][16]。最初,由酵母菌組發現的基因被賦予不同的名稱(APG、AUT、CVT、GSA、PAG、PAZ和PDD)。2003年,有研究人員提出了統一的命名法,即使用ATG表示自噬基因[17]

21世紀初,自噬研究領域經歷快速的發展。 ATG基因的知識為科學家提供了更方便的工具,以分析自噬在人類健康和疾病中的功能。1999年,貝絲·萊文(Beth Levine)的小組發表了一項具有里程碑意義的發現[18] ,將自噬與癌症聯繫起來。迄今為止,癌症與自噬之間的關係仍然是自噬研究的主要主題。自噬在神經退行性變和免疫防禦中的作用也受到了廣泛的關注。2003年,第一屆戈登自噬研究會議(Gordon Research Conference on autophagy)在沃特維爾舉行[19]。2005年,Daniel J Klionsky發行了致力於該領域的科學期刊《自噬》。2007年,首屆Keystone自噬專題討論會在蒙特里舉行[20]。2008年,Carol A Mercer創建了BHMT融合蛋白(GST-BHMT),該蛋白在細胞系中顯示飢餓誘導的位點特異性片段化。甜菜鹼高半胱氨酸甲基轉移酶英语Betaine—homocysteine S-methyltransferase的降解是一種可用於評估哺乳動物細胞中自噬通量的代謝酶。

巨自噬作用、微自噬作用英语Microautophagy伴侶分子介導自噬作用英语Chaperone-mediated autophagy由自噬相關基因及其相關酶介導[21][22][23] 。巨自噬作用細為本體自噬和選擇性自噬(bulk and selective autophagy)。在選擇性自噬中,又細分為線粒體自噬作用英语Mitophagy[24]、脂自噬作用、過氧化物酶體自噬作用[25]葉綠體自噬作用[26]核糖體自噬作用[27]等。

  • 巨自噬作用是主要的自噬途徑,主要用於清除受損的細胞器或未被使用的蛋白質[28]。首先,吞噬細胞將需要降解的物質吞噬,並在受損的細胞器周圍形成自噬體[29]。然後自噬體穿過細胞的細胞質到達溶酶體,兩個細胞器融合。在溶酶體內,自噬體內的內容物通過酸性溶酶體水解酶降解[30]
  • 微自噬作用涉及將細胞質內的物質直接吞噬到溶酶體中[31]。這是通過內陷發生的,意味著溶酶體膜向內折疊或細胞向外突出[29]
  • 伴侶分子介導自噬作用(CMA)是一個非常複雜和特異的途徑,涉及到包含hsc70的複合物的識別[29][32][32]。這意味著蛋白質必須包含hsc70複合物的識別位點,這將使其能夠與該分子伴侶結合,形成CMA-底物/分子伴侶複合物。然後,該複合物移動到溶酶體膜結合蛋白上,該蛋白將識別並與CMA受體結合。底物蛋白在識別後就解折疊,並在溶酶體hsc70分子伴侶的幫助下,跨越溶酶體膜轉運。CMA與其他類型的自噬存在顯著差異,因為它以一種一種的方式轉運蛋白物質,並且對哪種物質穿過溶酶體屏障具有極高的選擇性[28]
  • 線粒體自噬作用是通過自噬選擇性地降解線粒體。經歷損傷或受壓後,經常發生線粒體缺陷。線粒體吞噬作用促進線粒體的更新,並且防止功能異常的線粒體積聚,從而導致細胞變性。它是由酵母中的Atg3、NIX及其調節物BNIP3在哺乳動物中介導的。線粒體吞噬作用受到PINK1和parkin蛋白的調節。線粒體吞噬作用的發生不僅限於線粒體受損,還包括未受損的線粒體。
  • 脂自噬作用是通過自噬降解脂質[33],該功能在動物真菌細胞中都存在[34]。然而,脂肪吞噬作用在植物細胞中的作用仍然難以捉摸[35]。在脂質吞噬中,靶標是稱為脂質滴(LDs)的脂質結構,具有主要是三酰基甘油(TAGs)核心,以及單層磷脂和膜蛋白組成的球形細胞器。在動物細胞中,主要的脂肪吞噬途徑是通過吞噬細胞吞噬LD,即巨自噬。另一方面,在真菌細胞中,微脂代謝是主要途徑,尤其是在發芽酵母及釀酒酵母中得到了很好的研究[36]。脂吞噬作用最早在小鼠中發現,並且在2009年發表[37]

參閱

參考文獻

  1. ^ 1.0 1.1 Klionsky, DJ. Autophagy revisited: A conversation with Christian de Duve. Autophagy. 2008, 4 (6): 740–3. PMID 18567941. doi:10.4161/auto.6398. 
  2. ^ 2.0 2.1 Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway. Journal of Cell Biology. October 1992, 119 (2): 287-99. PMID 1400574. 
  3. ^ 3.0 3.1 Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. Journal of Cell Biology. October 1992, 119 (2): 301-11. PMID 1400575. 
  4. ^ 4.0 4.1 Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Letters. August 1994, 349 (2): 275-80. PMID 8050581. 
  5. ^ 5.0 5.1 Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Letters. October 1993, 333 (1-2): 169-74. PMID 8224160. 
  6. ^ 6.0 6.1 Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. Journal of Cell Biology. November 1995, 131 (3): 591-602. PMID 7593182. 
  7. ^ The Nobel Prize in Physiology or Medicine 2016. Nobel Foundation. [3 October 2016]. 
  8. ^ Ashford TP, Porter KR. Cytoplasmic components in hepatic cell lysosomes. The Journal of Cell Biology. January 1962, 12 (1): 198–202. PMC 2106008可免费查阅. PMID 13862833. doi:10.1083/jcb.12.1.198. 
  9. ^ Hruban Z, Spargo B, Swift H, Wissler RW, Kleinfeld RG. Focal cytoplasmic degradation. The American Journal of Pathology. June 1963, 42 (6): 657–83. PMC 1949709可免费查阅. PMID 13955261. 
  10. ^ Deter RL, Baudhuin P, De Duve C. Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. The Journal of Cell Biology. November 1967, 35 (2): C11–6. PMC 2107130可免费查阅. PMID 6055998. doi:10.1083/jcb.35.2.c11. 
  11. ^ Deter RL, De Duve C. Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. The Journal of Cell Biology. May 1967, 33 (2): 437–49. PMC 2108350可免费查阅. PMID 4292315. doi:10.1083/jcb.33.2.437. 
  12. ^ de Duve C. Lysosomes revisited. European Journal of Biochemistry. December 1983, 137 (3): 391–7. PMID 6319122. doi:10.1111/j.1432-1033.1983.tb07841.x. 
  13. ^ Dunn WA, Schroder LA, Aris JP. Historical overview of autophagy. Wang HG (编). Autophagy and Cancer. Springer. 2013: 3–4. ISBN 9781461465614. 
  14. ^ Van Noorden R, Ledford H. Medicine Nobel for research on how cells 'eat themselves'. Nature. October 2016, 538 (7623): 18–19. Bibcode:2016Natur.538...18V. PMID 27708326. doi:10.1038/nature.2016.20721. 
  15. ^ Harding TM, Hefner-Gravink A, Thumm M, Klionsky DJ. Genetic and phenotypic overlap between autophagy and the cytoplasm to vacuole protein targeting pathway. The Journal of Biological Chemistry. July 1996, 271 (30): 17621–4. PMID 8663607. doi:10.1074/jbc.271.30.17621. 
  16. ^ Scott SV, Hefner-Gravink A, Morano KA, Noda T, Ohsumi Y, Klionsky DJ. Cytoplasm-to-vacuole targeting and autophagy employ the same machinery to deliver proteins to the yeast vacuole. Proceedings of the National Academy of Sciences of the United States of America. October 1996, 93 (22): 12304–8. Bibcode:1996PNAS...9312304S. PMC 37986可免费查阅. PMID 8901576. doi:10.1073/pnas.93.22.12304. 
  17. ^ Klionsky DJ, Cregg JM, Dunn WA, Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, Ohsumi Y. A unified nomenclature for yeast autophagy-related genes. Developmental Cell. October 2003, 5 (4): 539–45. PMID 14536056. doi:10.1016/s1534-5807(03)00296-x. 
  18. ^ Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. December 1999, 402 (6762): 672–6. Bibcode:1999Natur.402..672L. PMID 10604474. doi:10.1038/45257. 
  19. ^ Autophagy in Stress, Development & Disease, 2003, Gordon Research Conference. 
  20. ^ Autophagy in Health and Disease (Z3), 2007, Keystone Symposia on Molecular and Cellular Biology. 
  21. ^ Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. The Biochemical Journal. January 2012, 441 (2): 523–40. PMC 3258656可免费查阅. PMID 22187934. doi:10.1042/BJ20111451. 
  22. ^ Mizushima N, Ohsumi Y, Yoshimori T. Autophagosome formation in mammalian cells. Cell Structure and Function. December 2002, 27 (6): 421–9. PMID 12576635. doi:10.1247/csf.27.421. 
  23. ^ Youle RJ, Narendra DP. Mechanisms of mitophagy. Nature Reviews. Molecular Cell Biology. January 2011, 12 (1): 9–14. PMC 4780047可免费查阅. PMID 21179058. doi:10.1038/nrm3028. 
  24. ^ Ding WX, Yin XM. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biological Chemistry. July 2012, 393 (7): 547–64. PMC 3630798可免费查阅. PMID 22944659. doi:10.1515/hsz-2012-0119. 
  25. ^ Till A, Lakhani R, Burnett SF, Subramani S. Pexophagy: the selective degradation of peroxisomes. International Journal of Cell Biology. 2012, 2012: 512721. PMC 3320016可免费查阅. PMID 22536249. doi:10.1155/2012/512721. 
  26. ^ Lei L. Chlorophagy: Preventing sunburn. Nature Plants. March 2017, 3 (3): 17026. PMID 28248315. doi:10.1038/nplants.2017.26. 
  27. ^ An H, Harper JW. Systematic analysis of ribophagy in human cells reveals bystander flux during selective autophagy. Nature Cell Biology. February 2018, 20 (2): 135–143. PMC 5786475可免费查阅. PMID 29230017. doi:10.1038/s41556-017-0007-x. 
  28. ^ 28.0 28.1 Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. January 2011, 469 (7330): 323–35. Bibcode:2011Natur.469..323L. PMC 3131688可免费查阅. PMID 21248839. doi:10.1038/nature09782. 
  29. ^ 29.0 29.1 29.2 Česen MH, Pegan K, Spes A, Turk B. Lysosomal pathways to cell death and their therapeutic applications. Experimental Cell Research. July 2012, 318 (11): 1245–51. PMID 22465226. doi:10.1016/j.yexcr.2012.03.005. 
  30. ^ Homma, K.S. List of autophagy-related proteins and 3D structures. Autophagy Database. 2011, 290 [2012-10-08]. (原始内容存档于2012-08-01). 
  31. ^ Castro-Obregon, Susana. The Discovery of Lysosomes and Autophagy. Nature Education. 2010, 3 (9): 49. 
  32. ^ 32.0 32.1 Bandyopadhyay U, Kaushik S, Varticovski L, Cuervo AM. The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Molecular and Cellular Biology. September 2008, 28 (18): 5747–63. PMC 2546938可免费查阅. PMID 18644871. doi:10.1128/MCB.02070-07. 
  33. ^ Liu K, Czaja MJ. Regulation of lipid stores and metabolism by lipophagy. Cell Death and Differentiation. January 2013, 20 (1): 3–11. PMC 3524634可免费查阅. PMID 22595754. doi:10.1038/cdd.2012.63. 
  34. ^ Ward C, Martinez-Lopez N, Otten EG, Carroll B, Maetzel D, Singh R, Sarkar S, Korolchuk VI. Autophagy, lipophagy and lysosomal lipid storage disorders. Biochimica et Biophysica Acta. April 2016, 1861 (4): 269–84. PMID 26778751. doi:10.1016/j.bbalip.2016.01.006. 
  35. ^ Elander PH, Minina EA, Bozhkov PV. Autophagy in turnover of lipid stores: trans-kingdom comparison. Journal of Experimental Botany. March 2018, 69 (6): 1301–1311. PMID 29309625. doi:10.1093/jxb/erx433. 
  36. ^ van Zutphen T, Todde V, de Boer R, Kreim M, Hofbauer HF, Wolinski H, Veenhuis M, van der Klei IJ, Kohlwein SD. Lipid droplet autophagy in the yeast Saccharomyces cerevisiae. Molecular Biology of the Cell. January 2014, 25 (2): 290–301. PMC 3890349可免费查阅. PMID 24258026. doi:10.1091/mbc.E13-08-0448. 
  37. ^ Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ. Autophagy regulates lipid metabolism. Nature. April 2009, 458 (7242): 1131–5. Bibcode:2009Natur.458.1131S. PMC 2676208可免费查阅. PMID 19339967. doi:10.1038/nature07976. 

外部鏈接