最大餘額法

维基百科,自由的百科全书
(重定向自最大餘額方法
跳转至: 导航搜索

最大餘額方法英文Largest Remainder Method)又稱數額制,是比例代表制投票制度下,一種議席分配的方法,相對於最高均數方法

透過最大餘額方法,候選人須以名單參選,每份名單的人數最多可達至相關選區內的議席數目。候選人在名單內按優先次序排列。選民投票給一份名單,而不是個別候選人。投票結束後,把有效選票除以數額quota,見下)。一份名單每取得數額1倍的票數,便能獲分配一個議席。每份名單的候選人按原先訂立的順序當選。

如此類推、將議席分配至每份名單的餘額,均比數額為低的時候,則從最大餘額者順序分配餘下議席;最大餘額方法因而得名。

數額[编辑]

最常用的最大餘額方法,分別使用4種數額:

具體例子[编辑]

假設選舉投票人次100,000,分配10個議席。選舉結果:
LRM.png

黑爾數額為\begin{matrix} \frac{100,000}{10} \end{matrix} = 10,000張選票,即每張名單每獲得10,000張選票,便能首先得到1個議席:
LRM2.png
因此,名單丙、丁、戊各得1席,名單己得4席。餘下3席,則對比各個餘額。其中名單乙、戊、己的餘額最大,因此分別獲選其餘3席。

換言之,在最大餘額方法之下,名單乙、丙、丁各得1席,名單戊得2席,名單己得5席。

利弊[编辑]

以最大餘額方法分配議席不算複雜,一般選民應該能夠理解運作方法。使用黑爾數額的最大餘額方法,並不偏重得票率較多或較少的名單,好處在於能給出中立、但同時具廣泛代表性的選舉結果。最大餘額方法能包容少數派,有利發展多黨派的議會。這種制度也令選民不能投票給個別候選人;從正面的角度看,這代表選民會改以各份參選名單的政綱為投票考慮依據,加強選舉的理性基礎。不過,各個政黨可能會有相應的「配票策略」,例如將同黨候選人分拆在不同的名單,好讓候選人能通過餘額數當選。

不過,某名單是否能夠獲得議席,極大程度取決於其他名單得票率比重如何。名單很有可能得票率高、但反而因此喪失一個議席。增加議席也可能反而導致某些名單喪失議席,這稱為阿拉巴馬悖論Alabama paradox)。聖拉古計算法Sainte-Laguë method)避免了這種情況,但較難理解。

以下就阿拉巴馬悖論舉出一例。6張參選名單,各張名單得票比率200:500:500:900:1500:1500,要分配25個議席:
LRM3.png
通過數額分配,名單甲至己分別首先獲得0、2、2、4、7、7個議席;再對比各個餘額,名單甲、乙、丙分別再各得1席。

不過,如果將分配議席數量增加至26個:
LRM4.png
通過數額分配,名單甲至己分別首先獲得1、2、2、4、7、7個議席;但對比各個餘額,之前未能增加議席的名單丁、戊、己,分別再各得1席;除名單甲因剛好獲得足夠數額贏得議席而未剩餘額外,乙、丙皆未能再通過最大餘額分配而獲得議席。

參考文獻[编辑]

外部連結[编辑]