晶系
晶體通常可分為七種晶系,即立方晶系、六方晶系、四方晶系、三方晶系、正交晶系、單斜晶系、三斜晶系。其中的立方晶系具有各向同性,屬於高級晶族。
晶系的特徵
[編輯]晶系的特徵與細分關係如下表:
晶族 | 晶系 | 點群的對稱性 | 點群 | 空間群 | 布拉菲晶格 | 特徵 | 晶格系統 |
---|---|---|---|---|---|---|---|
三斜 | 無 | 2 | 2 | 1 | α≠β≠γ≠90°,a≠b≠c | 三斜 | |
單斜 | 1個兩次對稱軸 或 1個對稱面 | 3 | 13 | 2 | α=γ=90°,β≠90°,a≠b≠c | 單斜 | |
正交/斜方 | 3個兩次對稱軸 或 1個兩次對稱軸+2個對稱面 | 3 | 59 | 4 | α=β=γ=90°,a≠b≠c | 正交/斜方 | |
四方/正方 | 1個四次對稱軸 | 7 | 68 | 2 | α=β=γ=90°,a=b≠c | 四方/正方 | |
六方 | 三方 | 1個三次對稱軸 | 5 | 7 | 1 | α=β=γ≠90°,a=b=c | 三方 |
18 | 1 | α=β=90°,γ=120°,a=b≠c | 六方 | ||||
六方 | 1個六次對稱軸 | 7 | 27 | ||||
立方/等軸 | 4個三次對稱軸 | 5 | 36 | 3 | α=β=γ=90°,a=b=c | 立方/等軸 | |
6 | 7 | 共計 | 32 | 230 | 14 | 7 |
布拉菲晶格
[編輯]這14種布拉菲晶格可分成7種晶系,每種晶系又可依中心原子在晶胞中的位置不同再分成6種晶格:
- 簡單(P):晶格點只在晶格的八個頂點處
- 體心(I):除八個頂點處有晶格點外,晶胞中心還有一個晶格點
- 面心(F):除八個頂點處有晶格點外,在六個面的中央還有一個晶格點
- 底心(A,B或C):除八個頂點處有晶格點外,在晶胞的一組平行面(A,B或C)的每個面中央還有一個晶格點
7種不同晶系與每種晶系的6種不同晶格共有7 × 6 = 42種組合,但是有些組合其實是相同的,都能組成14種布拉菲晶格。例如,單斜晶系的體心晶格可以通過單斜晶系的底心(C)晶格選擇不同的晶軸得到,所以這兩種其實是同一種;同樣,所有的底心(A)、底心(B)晶格都相當於底心(C)或簡單(P)晶格。因此,去除相同的組合,可以得到14種不同的布拉菲晶格,列於下表(晶格圖下方是代表該布拉菲晶格的皮爾遜符號,表中空白的格表示於已有的晶格重複):
晶系 | 點陣常數特徵 | 布拉菲晶格 | |||
---|---|---|---|---|---|
簡單(P) | 底心(C) | 體心(I) | 面心(F) | ||
三斜晶系 | a≠b≠c,α≠β≠γ≠90° | ||||
單斜晶系 | a≠b≠c,α=γ=90°≠β | ||||
斜方晶系 (正交晶系) |
a≠b≠c,α=β=γ=90° | ||||
四方晶系 | a=b≠c,α=β=γ=90° | ||||
三方晶系 (棱方晶系) |
a=b=c,α=β=γ≠90° | ||||
六方晶系 | a=b≠c,α=β=90º,γ=120° | ||||
等軸晶系 (立方晶系) |
a=b=c,α=β=γ=90° |
每一個單位晶格的體積可以由計算得知。其中,和是晶格向量。各種布拉菲晶格的體積如下:
晶系 | 體積 | |||
三斜晶系 | ||||
單斜晶系 | ||||
斜方晶系 | ||||
四方晶系 | ||||
三方晶系 | ||||
六方晶系 | ||||
等軸晶系 |
晶體學點群
[編輯]熊夫利記號
[編輯]在熊夫利中,點群是用字母符號加上數字下標表示的。下面簡述晶體學中使用的這種符號的意義[1]:
- Cn(循環群)表示該群有一根n次旋轉軸。Cnh是Cn加上一個與旋轉軸垂直的鏡面(反映)對稱元素。Cnv則是Cn加上n個與旋轉軸平行的鏡面對稱元素。
- S2n(源自德語Spiegel,意思是鏡面)表示一根只含有2n次旋轉反映軸(簡稱映軸)。
- Dn(二面體群)表示這個群只有一根n次旋轉軸和n根垂直於這根主軸的二重軸。Dnh是加上一個與n次旋轉軸垂直的鏡面。Dnd則是Dn是加上n個與n次旋轉軸平行的鏡面。
- 字母T(四面體)表示這個群有四面體的對稱性。Td則包括了旋轉反映操作,T群本身則不包含旋轉反映操作,Th則是T群加上與旋轉軸垂直的鏡面。
- 字母O(八面體)表示該群具有八面體或者立方體的對稱性,可能包括(Oh)或不包括(O)旋轉反映操作。
根據晶體局限定理,在二維或三維空間中n的取值只有1、2、3、4和6。
n | 1 | 2 | 3 | 4 | 6 |
---|---|---|---|---|---|
Cn | C1 | C2 | C3 | C4 | C6 |
Cnv | C1v=C1h | C2v | C3v | C4v | C6v |
Cnh | C1h | C2h | C3h | C4h | C6h |
Dn | D1=C2 | D2 | D3 | D4 | D6 |
Dnh | D1h=C2v | D2h | D3h | D4h | D6h |
Dnd | D1d=C2h | D2d | D3d | D4d | D6d |
S2n | S2 | S4 | S6 | S8 | S12 |
D4d和D6d實際上是不存在的,因為它們分別包含了n=8和12的旋轉反映軸。表格中剩下的27種點群與T、Td、Th、O和Oh共同組成32種晶體學點群。
赫爾曼–莫甘記號
[編輯]赫爾曼–莫甘記號的一種簡略形式廣泛用於表示空間群,也用於描述晶體學點群。群的名稱列在下表中;點群間相互之關係可見右圖。
1 | 1 | |||||
2 | 2⁄m | 222 | m | mm2 | mmm | |
3 | 3 | 32 | 3m | 3m | ||
4 | 4 | 4⁄m | 422 | 4mm | 42m | 4⁄mmm |
6 | 6 | 6⁄m | 622 | 6mm | 62m | 6⁄mmm |
23 | m3 | 432 | 43m | m3m |
不同記號關係
[編輯]晶族 | 晶系 | 赫爾曼–莫甘 (完整記號) |
赫爾曼–莫甘 (簡寫記號) |
舒勃尼科夫[2] | 熊夫利 | 軌形記號 | 考克斯特記號 | 階 |
---|---|---|---|---|---|---|---|---|
1 | 1 | C1 | 11 | [ ]+ | 1 | |||
1 | 1 | Ci = S2 | x | [2+,2+] | 2 | |||
2 | 2 | C2 | 22 | [2]+ | 2 | |||
m | m | Cs = C1h | * | [ ] | 2 | |||
2/m | C2h | 2* | [2,2+] | 4 | ||||
222 | 222 | D2 = V | 222 | [2,2]+ | 4 | |||
mm2 | mm2 | C2v | *22 | [2] | 4 | |||
mmm | D2h | *222 | [2,2] | 8 | ||||
4 | 4 | C4 | 44 | [4]+ | 4 | |||
4 | 4 | S4 | 2x | [2+,4+] | 4 | |||
4/m | C4h | 4* | [2,4+] | 8 | ||||
422 | 422 | D4 | 422 | [4,2]+ | 8 | |||
4mm | 4mm | C4v | *44 | [4] | 8 | |||
42m | 42m | D2d | 2*2 | [2+,4] | 8 | |||
4/mmm | D4h | *422 | [4,2] | 16 | ||||
3 | 3 | C3 | 33 | [3]+ | 3 | |||
3 | 3 | S6 = C3i | 3x | [2+,6+] | 6 | |||
32 | 32 | D3 | 322 | [3,2]+ | 6 | |||
3m | 3m | C3v | *33 | [3] | 6 | |||
3 | 3m | D3d | 2*3 | [2+,6] | 12 | |||
6 | 6 | C6 | 66 | [6]+ | 6 | |||
6 | 6 | C3h | 3* | [2,3+] | 6 | |||
6/m | C6h | 6* | [2,6+] | 12 | ||||
622 | 622 | D6 | 622 | [6,2]+ | 12 | |||
6mm | 6mm | C6v | *66 | [6] | 12 | |||
6m2 | 6m2 | D3h | *322 | [3,2] | 12 | |||
6/mmm | D6h | *622 | [6,2] | 24 | ||||
23 | 23 | T | 332 | [3,3]+ | 12 | |||
3 | m3 | Th | 3*2 | [3+,4] | 24 | |||
432 | 432 | O | 432 | [4,3]+ | 24 | |||
43m | 43m | Td | *332 | [3,3] | 24 | |||
3 | m3m | Oh | *432 | [4,3] | 48 |
其它維度
[編輯]二維
[編輯]二維空間具有相同數量的晶系、晶族和晶格。在二維空間有四種晶系:斜晶系、矩晶系、方晶系、六方晶系。
四維
[編輯]四維晶胞由四個邊長(a、b、c、d)和六個軸間角(α、β、γ、δ、ε、ζ)定義。以下晶格參數條件定義了23種晶系。
No. | 晶系(1985年Whittaker命名[3]) | 邊長 | 軸間角 |
---|---|---|---|
1 | Hexaclinic | a ≠ b ≠ c ≠ d | α ≠ β ≠ γ ≠ δ ≠ ε ≠ ζ ≠ 90° |
2 | Triclinic | a ≠ b ≠ c ≠ d | α ≠ β ≠ γ ≠ 90° δ = ε = ζ = 90° |
3 | Diclinic | a ≠ b ≠ c ≠ d | α ≠ 90° β = γ = δ = ε = 90° ζ ≠ 90° |
4 | Monoclinic | a ≠ b ≠ c ≠ d | α ≠ 90° β = γ = δ = ε = ζ = 90° |
5 | Orthogonal | a ≠ b ≠ c ≠ d | α = β = γ = δ = ε = ζ = 90° |
6 | Tetragonal monoclinic | a ≠ b = c ≠ d | α ≠ 90° β = γ = δ = ε = ζ = 90° |
7 | Hexagonal monoclinic | a ≠ b = c ≠ d | α ≠ 90° β = γ = δ = ε = 90° ζ = 120° |
8 | Ditetragonal diclinic | a = d ≠ b = c | α = ζ = 90° β = ε ≠ 90° γ ≠ 90° δ = 180° − γ |
9 | Ditrigonal (dihexagonal) diclinic | a = d ≠ b = c | α = ζ = 120° β = ε ≠ 90° γ ≠ δ ≠ 90° cos δ = cos β − cos γ |
10 | Tetragonal orthogonal | a ≠ b = c ≠ d | α = β = γ = δ = ε = ζ = 90° |
11 | Hexagonal orthogonal | a ≠ b = c ≠ d | α = β = γ = δ = ε = 90°, ζ = 120° |
12 | Ditetragonal monoclinic | a = d ≠ b = c | α = γ = δ = ζ = 90° β = ε ≠ 90° |
13 | Ditrigonal (dihexagonal) monoclinic | a = d ≠ b = c | α = ζ = 120° β = ε ≠ 90° γ = δ ≠ 90° cos γ = −1/2cos β |
14 | Ditetragonal orthogonal | a = d ≠ b = c | α = β = γ = δ = ε = ζ = 90° |
15 | Hexagonal tetragonal | a = d ≠ b = c | α = β = γ = δ = ε = 90° ζ = 120° |
16 | Dihexagonal orthogonal | a = d ≠ b = c | α = ζ = 120° β = γ = δ = ε = 90° |
17 | Cubic orthogonal | a = b = c ≠ d | α = β = γ = δ = ε = ζ = 90° |
18 | Octagonal | a = b = c = d | α = γ = ζ ≠ 90° β = ε = 90° δ = 180° − α |
19 | Decagonal | a = b = c = d | α = γ = ζ ≠ β = δ = ε cos β = −1/2 − cos α |
20 | Dodecagonal | a = b = c = d | α = ζ = 90° β = ε = 120° γ = δ ≠ 90° |
21 | Diisohexagonal orthogonal | a = b = c = d | α = ζ = 120° β = γ = δ = ε = 90° |
22 | Icosagonal (icosahedral) | a = b = c = d | α = β = γ = δ = ε = ζ cos α = −1/4 |
23 | Hypercubic | a = b = c = d | α = β = γ = δ = ε = ζ = 90° |
由1985年Whittaker命名[3]。
名字幾乎與Brown等人[4]的命名相同,只有9、13、22名稱不同。括號是他們命的名。
晶族序 | 晶族(英文) | 晶系(英文) | 晶系序 | 點群 | 空間群 | 布拉菲晶格 | 晶格 |
---|---|---|---|---|---|---|---|
I | Hexaclinic | 1 | 2 | 2 | 1 | Hexaclinic P | |
II | Triclinic | 2 | 3 | 13 | 2 | Triclinic P, S | |
III | Diclinic | 3 | 2 | 12 | 3 | Diclinic P, S, D | |
IV | Monoclinic | 4 | 4 | 207 | 6 | Monoclinic P, S, S, I, D, F | |
V | Orthogonal | Non-axial orthogonal | 5 | 2 | 2 | 1 | Orthogonal KU |
112 | 8 | Orthogonal P, S, I, Z, D, F, G, U | |||||
Axial orthogonal | 6 | 3 | 887 | ||||
VI | Tetragonal monoclinic | 7 | 7 | 88 | 2 | Tetragonal monoclinic P, I | |
VII | Hexagonal monoclinic | Trigonal monoclinic | 8 | 5 | 9 | 1 | Hexagonal monoclinic R |
15 | 1 | Hexagonal monoclinic P | |||||
Hexagonal monoclinic | 9 | 7 | 25 | ||||
VIII | Ditetragonal diclinic* | 10 | 1 (+1) | 1 (+1) | 1 (+1) | Ditetragonal diclinic P* | |
IX | Ditrigonal diclinic* | 11 | 2 (+2) | 2 (+2) | 1 (+1) | Ditrigonal diclinic P* | |
X | Tetragonal orthogonal | Inverse tetragonal orthogonal | 12 | 5 | 7 | 1 | Tetragonal orthogonal KG |
351 | 5 | Tetragonal orthogonal P, S, I, Z, G | |||||
Proper tetragonal orthogonal | 13 | 10 | 1312 | ||||
XI | Hexagonal orthogonal | Trigonal orthogonal | 14 | 10 | 81 | 2 | Hexagonal orthogonal R, RS |
150 | 2 | Hexagonal orthogonal P, S | |||||
Hexagonal orthogonal | 15 | 12 | 240 | ||||
XII | Ditetragonal monoclinic* | 16 | 1 (+1) | 6 (+6) | 3 (+3) | Ditetragonal monoclinic P*, S*, D* | |
XIII | Ditrigonal monoclinic* | 17 | 2 (+2) | 5 (+5) | 2 (+2) | Ditrigonal monoclinic P*, RR* | |
XIV | Ditetragonal orthogonal | Crypto-ditetragonal orthogonal | 18 | 5 | 10 | 1 | Ditetragonal orthogonal D |
165 (+2) | 2 | Ditetragonal orthogonal P, Z | |||||
Ditetragonal orthogonal | 19 | 6 | 127 | ||||
XV | Hexagonal tetragonal | 20 | 22 | 108 | 1 | Hexagonal tetragonal P | |
XVI | Dihexagonal orthogonal | Crypto-ditrigonal orthogonal* | 21 | 4 (+4) | 5 (+5) | 1 (+1) | Dihexagonal orthogonal G* |
5 (+5) | 1 | Dihexagonal orthogonal P | |||||
Dihexagonal orthogonal | 23 | 11 | 20 | ||||
Ditrigonal orthogonal | 22 | 11 | 41 | ||||
16 | 1 | Dihexagonal orthogonal RR | |||||
XVII | Cubic orthogonal | Simple cubic orthogonal | 24 | 5 | 9 | 1 | Cubic orthogonal KU |
96 | 5 | Cubic orthogonal P, I, Z, F, U | |||||
Complex cubic orthogonal | 25 | 11 | 366 | ||||
XVIII | Octagonal* | 26 | 2 (+2) | 3 (+3) | 1 (+1) | Octagonal P* | |
XIX | Decagonal | 27 | 4 | 5 | 1 | Decagonal P | |
XX | Dodecagonal* | 28 | 2 (+2) | 2 (+2) | 1 (+1) | Dodecagonal P* | |
XXI | Diisohexagonal orthogonal | Simple diisohexagonal orthogonal | 29 | 9 (+2) | 19 (+5) | 1 | Diisohexagonal orthogonal RR |
19 (+3) | 1 | Diisohexagonal orthogonal P | |||||
Complex diisohexagonal orthogonal | 30 | 13 (+8) | 15 (+9) | ||||
XXII | Icosagonal | 31 | 7 | 20 | 2 | Icosagonal P, SN | |
XXIII | Hypercubic | Octagonal hypercubic | 32 | 21 (+8) | 73 (+15) | 1 | Hypercubic P |
107 (+28) | 1 | Hypercubic Z | |||||
Dodecagonal hypercubic | 33 | 16 (+12) | 25 (+20) | ||||
共計 | 23 (+6) | 33 (+7) | 227 (+44) | 4783 (+111) | 64 (+10) | 33 (+7) |
參見
[編輯]參考資料
[編輯]- Cornelis Klein, Barbara Dutrow, 2007. Manual of Mineral Science, 23rd Edition
- ^ (簡體中文)麥松威、周公度、李偉基. 高等无机结构化学 第二版. 北京: 北京大學出版社. 2006. ISBN 9787301047934.
- ^ (英文) 存档副本. [2011-11-25]. (原始內容存檔於2013-07-04).
- ^ 3.0 3.1 3.2 Whittaker, E. J. W. An Atlas of Hyperstereograms of the Four-Dimensional Crystal Classes. 牛津: 牛津大學出版社. 1985. ISBN 978-0-19-854432-6. OCLC 638900498.
- ^ 4.0 4.1 Brown, H.; Bülow, R.; Neubüser, J.; Wondratschek, H.; Zassenhaus, H. Crystallographic Groups of Four-Dimensional Space. 紐約: Wiley. 1978. ISBN 978-0-471-03095-9. OCLC 939898594.
外部連結
[編輯]- Overview of the 32 groups
- Mineral galleries – Symmetry
- all cubic crystal classes, forms, and stereographic projections (interactive java applet)
- Crystal system (頁面存檔備份,存於互聯網檔案館) at the Online Dictionary of Crystallography (頁面存檔備份,存於互聯網檔案館)
- Crystal family (頁面存檔備份,存於互聯網檔案館) at the Online Dictionary of Crystallography (頁面存檔備份,存於互聯網檔案館)
- Lattice system (頁面存檔備份,存於互聯網檔案館) at the Online Dictionary of Crystallography (頁面存檔備份,存於互聯網檔案館)
- Conversion Primitive to Standard Conventional for VASP input files 互聯網檔案館的存檔,存檔日期2021-11-26.
- Learning Crystallography (頁面存檔備份,存於互聯網檔案館)