跳转到内容
主菜单
主菜单
移至侧栏
隐藏
导航
首页
分类索引
特色内容
新闻动态
最近更改
随机条目
帮助
帮助
维基社群
方针与指引
互助客栈
知识问答
字词转换
IRC即时聊天
联络我们
关于维基百科
搜索
搜索
外观
资助维基百科
创建账号
登录
个人工具
资助维基百科
创建账号
登录
未登录编辑者的页面
了解详情
贡献
讨论
目录
移至侧栏
隐藏
序言
1
积分只有sin的函數
2
积分只有cos的函數
3
积分只有tan的函數
4
积分只有sec的函數
5
积分只有csc的函數
6
积分只有cot的函數
7
积分只有sin和cos的函數
8
积分只有sin和tan的函數
9
积分只有cos和tan的函數
10
积分只有sin和cot的函數
11
积分只有cos和cot的函數
12
积分只有tan和cot的函數
开关目录
三角函数积分表
37种语言
العربية
Azərbaycanca
Български
বাংলা
Bosanski
Català
کوردی
Čeština
Чӑвашла
English
Español
Euskara
فارسی
Français
Galego
हिन्दी
Hrvatski
Հայերեն
Bahasa Indonesia
Italiano
日本語
ភាសាខ្មែរ
한국어
Македонски
Nederlands
Norsk bokmål
Português
Română
Русский
Srpskohrvatski / српскохрватски
Slovenščina
Српски / srpski
தமிழ்
ไทย
Türkçe
Українська
Tiếng Việt
编辑链接
条目
讨论
不转换
不转换
简体
繁體
大陆简体
香港繁體
澳門繁體
大马简体
新加坡简体
臺灣正體
阅读
编辑
查看历史
工具
工具
移至侧栏
隐藏
操作
阅读
编辑
查看历史
常规
链入页面
相关更改
上传文件
特殊页面
固定链接
页面信息
引用此页
获取短链接
下载二维码
打印/导出
下载为PDF
打印页面
在其他项目中
维基数据项目
外观
移至侧栏
隐藏
维基百科,自由的百科全书
(重定向自
三角函數積分表
)
此條目
没有列出任何
参考或来源
。
(
2017年12月26日
)
維基百科所有的內容都應該
可供查證
。请协助補充
可靠来源
以
改善这篇条目
。无法查证的內容可能會因為異議提出而被移除。
三角学
历史
(
英语
:
History of trigonometry
)
三角函数
(
反三角函数
)
广义三角函数
(
英语
:
Generalized trigonometry
)
参考
恒等式
精确值
三角表
(
英语
:
Trigonometric tables
)
单位圆
定理
正弦
餘弦
正切
餘切
勾股定理
微积分
三角换元法
积分
(
反三角函数
)
微分
查
论
编
以下是部份三角函數的積分表(省略积分常数):
积分只有
sin
的函數
[
编辑
]
∫
sin
c
x
d
x
=
−
1
c
cos
c
x
{\displaystyle \int \sin cx\;dx=-{\frac {1}{c}}\cos cx\,\!}
∫
sin
n
c
x
d
x
=
−
1
n
c
sin
n
−
1
c
x
cos
c
x
+
n
−
1
n
∫
sin
n
−
2
c
x
d
x
(
{\displaystyle \int \sin ^{n}cx\;dx=-{\frac {1}{nc}}\sin ^{n-1}cx\cos cx+{\frac {n-1}{n}}\int \sin ^{n-2}cx\;dx\qquad (}
其中
n
>
0
)
{\displaystyle n>0\,\!)}
∫
1
−
sin
x
d
x
=
∫
cvs
x
d
x
=
2
cos
x
2
+
sin
x
2
cos
x
2
−
sin
x
2
cvs
x
(
=
2
1
+
sin
x
)
{\displaystyle \int {\sqrt {1-\sin {x}}}\,dx=\int {\sqrt {\operatorname {cvs} {x}}}\,dx=2{\frac {\cos {\frac {x}{2}}+\sin {\frac {x}{2}}}{\cos {\frac {x}{2}}-\sin {\frac {x}{2}}}}{\sqrt {\operatorname {cvs} {x}}}(=2{\sqrt {1+\sin x}})}
(其中
cvs
x
{\displaystyle \operatorname {cvs} {x}}
是
餘矢(Coversine)函數
(參閱
正矢(versine)函數
))
∫
x
sin
c
x
d
x
=
sin
c
x
c
2
−
x
cos
c
x
c
{\displaystyle \int x\sin cx\;dx={\frac {\sin cx}{c^{2}}}-{\frac {x\cos cx}{c}}\,\!}
∫
x
n
sin
c
x
d
x
=
−
x
n
c
cos
c
x
+
n
c
∫
x
n
−
1
cos
c
x
d
x
(
{\displaystyle \int x^{n}\sin cx\;dx=-{\frac {x^{n}}{c}}\cos cx+{\frac {n}{c}}\int x^{n-1}\cos cx\;dx\qquad (}
其中
n
>
0
)
{\displaystyle n>0\,\!)}
∫
−
a
2
a
2
x
2
sin
2
n
π
x
a
d
x
=
a
3
(
n
2
π
2
−
6
)
24
n
2
π
2
(
{\displaystyle \int _{-{\frac {a}{2}}}^{\frac {a}{2}}x^{2}\sin ^{2}{\frac {n\pi x}{a}}\;dx={\frac {a^{3}(n^{2}\pi ^{2}-6)}{24n^{2}\pi ^{2}}}\qquad (}
其中
n
=
2
,
4
,
6...
)
{\displaystyle n=2,4,6...\,\!)}
∫
sin
c
x
x
d
x
=
∑
i
=
0
∞
(
−
1
)
i
(
c
x
)
2
i
+
1
(
2
i
+
1
)
⋅
(
2
i
+
1
)
!
{\displaystyle \int {\frac {\sin cx}{x}}dx=\sum _{i=0}^{\infty }(-1)^{i}{\frac {(cx)^{2i+1}}{(2i+1)\cdot (2i+1)!}}\,\!}
∫
sin
c
x
x
n
d
x
=
−
sin
c
x
(
n
−
1
)
x
n
−
1
+
c
n
−
1
∫
cos
c
x
x
n
−
1
d
x
{\displaystyle \int {\frac {\sin cx}{x^{n}}}dx=-{\frac {\sin cx}{(n-1)x^{n-1}}}+{\frac {c}{n-1}}\int {\frac {\cos cx}{x^{n-1}}}dx\,\!}
∫
d
x
sin
c
x
=
1
c
ln
|
tan
c
x
2
|
{\displaystyle \int {\frac {dx}{\sin cx}}={\frac {1}{c}}\ln \left|\tan {\frac {cx}{2}}\right|}
∫
d
x
sin
n
c
x
=
cos
c
x
c
(
1
−
n
)
sin
n
−
1
c
x
+
n
−
2
n
−
1
∫
d
x
sin
n
−
2
c
x
(
{\displaystyle \int {\frac {dx}{\sin ^{n}cx}}={\frac {\cos cx}{c(1-n)\sin ^{n-1}cx}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\sin ^{n-2}cx}}\qquad (}
其中
n
>
1
)
{\displaystyle n>1\,\!)}
∫
d
x
1
±
sin
c
x
=
1
c
tan
(
c
x
2
∓
π
4
)
{\displaystyle \int {\frac {dx}{1\pm \sin cx}}={\frac {1}{c}}\tan \left({\frac {cx}{2}}\mp {\frac {\pi }{4}}\right)}
∫
x
d
x
1
+
sin
c
x
=
x
c
tan
(
c
x
2
−
π
4
)
+
2
c
2
ln
|
cos
(
c
x
2
−
π
4
)
|
{\displaystyle \int {\frac {x\;dx}{1+\sin cx}}={\frac {x}{c}}\tan \left({\frac {cx}{2}}-{\frac {\pi }{4}}\right)+{\frac {2}{c^{2}}}\ln \left|\cos \left({\frac {cx}{2}}-{\frac {\pi }{4}}\right)\right|}
∫
x
d
x
1
−
sin
c
x
=
x
c
cot
(
π
4
−
c
x
2
)
+
2
c
2
ln
|
sin
(
π
4
−
c
x
2
)
|
{\displaystyle \int {\frac {x\;dx}{1-\sin cx}}={\frac {x}{c}}\cot \left({\frac {\pi }{4}}-{\frac {cx}{2}}\right)+{\frac {2}{c^{2}}}\ln \left|\sin \left({\frac {\pi }{4}}-{\frac {cx}{2}}\right)\right|}
∫
sin
c
x
d
x
1
±
sin
c
x
=
±
x
+
1
c
tan
(
π
4
∓
c
x
2
)
{\displaystyle \int {\frac {\sin cx\;dx}{1\pm \sin cx}}=\pm x+{\frac {1}{c}}\tan \left({\frac {\pi }{4}}\mp {\frac {cx}{2}}\right)}
∫
sin
c
1
x
sin
c
2
x
d
x
=
sin
(
c
1
−
c
2
)
x
2
(
c
1
−
c
2
)
−
sin
(
c
1
+
c
2
)
x
2
(
c
1
+
c
2
)
(
{\displaystyle \int \sin c_{1}x\sin c_{2}x\;dx={\frac {\sin(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}-{\frac {\sin(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}\qquad (}
其中
|
c
1
|
≠
|
c
2
|
)
{\displaystyle |c_{1}|\neq |c_{2}|\,\!)}
积分只有
cos
的函數
[
编辑
]
∫
cos
c
x
d
x
=
1
c
sin
c
x
{\displaystyle \int \cos cx\;dx={\frac {1}{c}}\sin cx\,\!}
∫
cos
n
c
x
d
x
=
1
n
c
cos
n
−
1
c
x
sin
c
x
+
n
−
1
n
∫
cos
n
−
2
c
x
d
x
(
n
>
0
)
{\displaystyle \int \cos ^{n}cx\;dx={\frac {1}{nc}}\cos ^{n-1}cx\sin cx+{\frac {n-1}{n}}\int \cos ^{n-2}cx\;dx\qquad {\mbox{(}}n>0{\mbox{)}}\,\!}
∫
x
cos
c
x
d
x
=
cos
c
x
c
2
+
x
sin
c
x
c
{\displaystyle \int x\cos cx\;dx={\frac {\cos cx}{c^{2}}}+{\frac {x\sin cx}{c}}\,\!}
∫
x
n
cos
c
x
d
x
=
x
n
sin
c
x
c
−
n
c
∫
x
n
−
1
sin
c
x
d
x
{\displaystyle \int x^{n}\cos cx\;dx={\frac {x^{n}\sin cx}{c}}-{\frac {n}{c}}\int x^{n-1}\sin cx\;dx\,\!}
∫
−
a
2
a
2
x
2
cos
2
n
π
x
a
d
x
=
a
3
(
n
2
π
2
−
6
)
24
n
2
π
2
(
n
=
1
,
3
,
5...
)
{\displaystyle \int _{-{\frac {a}{2}}}^{\frac {a}{2}}x^{2}\cos ^{2}{\frac {n\pi x}{a}}\;dx={\frac {a^{3}(n^{2}\pi ^{2}-6)}{24n^{2}\pi ^{2}}}\qquad {\mbox{(}}n=1,3,5...{\mbox{)}}\,\!}
∫
cos
c
x
x
d
x
=
ln
|
c
x
|
+
∑
i
=
1
∞
(
−
1
)
i
(
c
x
)
2
i
2
i
⋅
(
2
i
)
!
{\displaystyle \int {\frac {\cos cx}{x}}dx=\ln |cx|+\sum _{i=1}^{\infty }(-1)^{i}{\frac {(cx)^{2i}}{2i\cdot (2i)!}}\,\!}
∫
cos
c
x
x
n
d
x
=
−
cos
c
x
(
n
−
1
)
x
n
−
1
−
c
n
−
1
∫
sin
c
x
x
n
−
1
d
x
(
n
≠
1
)
{\displaystyle \int {\frac {\cos cx}{x^{n}}}dx=-{\frac {\cos cx}{(n-1)x^{n-1}}}-{\frac {c}{n-1}}\int {\frac {\sin cx}{x^{n-1}}}dx\qquad {\mbox{(}}n\neq 1{\mbox{)}}\,\!}
∫
d
x
cos
c
x
=
1
c
ln
|
tan
(
c
x
2
+
π
4
)
|
{\displaystyle \int {\frac {dx}{\cos cx}}={\frac {1}{c}}\ln \left|\tan \left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)\right|}
∫
d
x
cos
n
c
x
=
sin
c
x
c
(
n
−
1
)
c
o
s
n
−
1
c
x
+
n
−
2
n
−
1
∫
d
x
cos
n
−
2
c
x
(
n
>
1
)
{\displaystyle \int {\frac {dx}{\cos ^{n}cx}}={\frac {\sin cx}{c(n-1)cos^{n-1}cx}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\cos ^{n-2}cx}}\qquad {\mbox{(}}n>1{\mbox{)}}\,\!}
∫
d
x
1
+
cos
c
x
=
1
c
tan
c
x
2
{\displaystyle \int {\frac {dx}{1+\cos cx}}={\frac {1}{c}}\tan {\frac {cx}{2}}\,\!}
∫
d
x
1
−
cos
c
x
=
−
1
c
cot
c
x
2
{\displaystyle \int {\frac {dx}{1-\cos cx}}=-{\frac {1}{c}}\cot {\frac {cx}{2}}\,\!}
∫
x
d
x
1
+
cos
c
x
=
x
c
tan
c
x
2
+
2
c
2
ln
|
cos
c
x
2
|
{\displaystyle \int {\frac {x\;dx}{1+\cos cx}}={\frac {x}{c}}\tan {\frac {cx}{2}}+{\frac {2}{c^{2}}}\ln \left|\cos {\frac {cx}{2}}\right|}
∫
x
d
x
1
−
cos
c
x
=
−
x
c
cot
c
x
2
+
2
c
2
ln
|
sin
c
x
2
|
{\displaystyle \int {\frac {x\;dx}{1-\cos cx}}=-{\frac {x}{c}}\cot {\frac {cx}{2}}+{\frac {2}{c^{2}}}\ln \left|\sin {\frac {cx}{2}}\right|}
∫
cos
c
x
d
x
1
+
cos
c
x
=
x
−
1
c
tan
c
x
2
{\displaystyle \int {\frac {\cos cx\;dx}{1+\cos cx}}=x-{\frac {1}{c}}\tan {\frac {cx}{2}}\,\!}
∫
cos
c
x
d
x
1
−
cos
c
x
=
−
x
−
1
c
cot
c
x
2
{\displaystyle \int {\frac {\cos cx\;dx}{1-\cos cx}}=-x-{\frac {1}{c}}\cot {\frac {cx}{2}}\,\!}
∫
cos
c
1
x
cos
c
2
x
d
x
=
sin
(
c
1
−
c
2
)
x
2
(
c
1
−
c
2
)
+
sin
(
c
1
+
c
2
)
x
2
(
c
1
+
c
2
)
(
|
c
1
|
≠
|
c
2
|
)
{\displaystyle \int \cos c_{1}x\cos c_{2}x\;dx={\frac {\sin(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}+{\frac {\sin(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}\qquad {\mbox{(}}|c_{1}|\neq |c_{2}|{\mbox{)}}\,\!}
积分只有
tan
的函數
[
编辑
]
∫
tan
c
x
d
x
=
−
1
c
ln
|
cos
c
x
|
=
1
c
ln
|
sec
c
x
|
{\displaystyle \int \tan cx\;dx=-{\frac {1}{c}}\ln |\cos cx|\ ={\frac {1}{c}}\ln |\sec cx|\,\!}
∫
tan
n
c
x
d
x
=
1
c
(
n
−
1
)
tan
n
−
1
c
x
−
∫
tan
n
−
2
c
x
d
x
(for
n
≠
1
)
{\displaystyle \int \tan ^{n}cx\;dx={\frac {1}{c(n-1)}}\tan ^{n-1}cx-\int \tan ^{n-2}cx\;dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
∫
d
x
tan
c
x
+
1
=
x
2
+
1
2
c
ln
|
sin
c
x
+
cos
c
x
|
{\displaystyle \int {\frac {dx}{\tan cx+1}}={\frac {x}{2}}+{\frac {1}{2c}}\ln |\sin cx+\cos cx|\,\!}
∫
d
x
tan
c
x
−
1
=
−
x
2
+
1
2
c
ln
|
sin
c
x
−
cos
c
x
|
{\displaystyle \int {\frac {dx}{\tan cx-1}}=-{\frac {x}{2}}+{\frac {1}{2c}}\ln |\sin cx-\cos cx|\,\!}
∫
tan
c
x
d
x
tan
c
x
+
1
=
x
2
−
1
2
c
ln
|
sin
c
x
+
cos
c
x
|
{\displaystyle \int {\frac {\tan cx\;dx}{\tan cx+1}}={\frac {x}{2}}-{\frac {1}{2c}}\ln |\sin cx+\cos cx|\,\!}
∫
tan
c
x
d
x
tan
c
x
−
1
=
x
2
+
1
2
c
ln
|
sin
c
x
−
cos
c
x
|
{\displaystyle \int {\frac {\tan cx\;dx}{\tan cx-1}}={\frac {x}{2}}+{\frac {1}{2c}}\ln |\sin cx-\cos cx|\,\!}
积分只有
sec
的函數
[
编辑
]
∫
sec
c
x
d
x
=
1
c
ln
|
sec
c
x
+
tan
c
x
|
{\displaystyle \int \sec {cx}\,dx={\frac {1}{c}}\ln {\left|\sec {cx}+\tan {cx}\right|}}
∫
sec
2
x
d
x
=
tan
x
+
C
{\displaystyle \int \sec ^{2}x{\mbox{d}}x=\tan x+C}
∫
sec
n
c
x
d
x
=
sec
n
−
2
c
x
tan
c
x
c
(
n
−
1
)
+
n
−
2
n
−
1
∫
sec
n
−
2
c
x
d
x
(for
n
≠
1
)
{\displaystyle \int \sec ^{n}{cx}\,dx={\frac {\sec ^{n-2}{cx}\tan {cx}}{c(n-1)}}\,+\,{\frac {n-2}{n-1}}\int \sec ^{n-2}{cx}\,dx\qquad {\mbox{ (for }}n\neq 1{\mbox{)}}\,\!}
∫
d
x
sec
x
+
1
=
x
−
tan
x
2
{\displaystyle \int {\frac {dx}{\sec {x}+1}}=x-\tan {\frac {x}{2}}}
积分只有
csc
的函數
[
编辑
]
∫
csc
c
x
d
x
=
1
c
ln
|
csc
c
x
−
cot
c
x
|
{\displaystyle \int \csc {cx}\,dx={\frac {1}{c}}\ln {\left|\csc {cx}-\cot {cx}\right|}}
∫
csc
2
x
d
x
=
−
cot
x
+
C
{\displaystyle \int \csc ^{2}x{\mbox{d}}x=-\cot x+C}
∫
csc
n
c
x
d
x
=
−
csc
n
−
2
c
x
cot
c
x
c
(
n
−
1
)
+
n
−
2
n
−
1
∫
csc
n
−
2
c
x
d
x
(for
n
≠
1
)
{\displaystyle \int \csc ^{n}{cx}\,dx=-{\frac {\csc ^{n-2}{cx}\cot {cx}}{c(n-1)}}\,+\,{\frac {n-2}{n-1}}\int \csc ^{n-2}{cx}\,dx\qquad {\mbox{ (for }}n\neq 1{\mbox{)}}\,\!}
积分只有
cot
的函數
[
编辑
]
∫
cot
c
x
d
x
=
1
c
ln
|
sin
c
x
|
{\displaystyle \int \cot cx\;dx={\frac {1}{c}}\ln |\sin cx|\,\!}
∫
cot
n
c
x
d
x
=
−
1
c
(
n
−
1
)
cot
n
−
1
c
x
−
∫
cot
n
−
2
c
x
d
x
(for
n
≠
1
)
{\displaystyle \int \cot ^{n}cx\;dx=-{\frac {1}{c(n-1)}}\cot ^{n-1}cx-\int \cot ^{n-2}cx\;dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
∫
d
x
1
+
cot
c
x
=
∫
tan
c
x
d
x
tan
c
x
+
1
{\displaystyle \int {\frac {dx}{1+\cot cx}}=\int {\frac {\tan cx\;dx}{\tan cx+1}}\,\!}
∫
d
x
1
−
cot
c
x
=
∫
tan
c
x
d
x
tan
c
x
−
1
{\displaystyle \int {\frac {dx}{1-\cot cx}}=\int {\frac {\tan cx\;dx}{\tan cx-1}}\,\!}
积分只有
sin
和
cos
的函數
[
编辑
]
∫
d
x
cos
c
x
±
sin
c
x
=
1
c
2
ln
|
tan
(
c
x
2
±
π
8
)
|
{\displaystyle \int {\frac {dx}{\cos cx\pm \sin cx}}={\frac {1}{c{\sqrt {2}}}}\ln \left|\tan \left({\frac {cx}{2}}\pm {\frac {\pi }{8}}\right)\right|}
∫
d
x
(
cos
c
x
±
sin
c
x
)
2
=
1
2
c
tan
(
c
x
∓
π
4
)
{\displaystyle \int {\frac {dx}{(\cos cx\pm \sin cx)^{2}}}={\frac {1}{2c}}\tan \left(cx\mp {\frac {\pi }{4}}\right)}
∫
d
x
(
cos
x
+
sin
x
)
n
=
1
n
−
1
[
sin
x
−
cos
x
(
cos
x
+
sin
x
)
n
−
1
−
2
(
n
−
2
)
∫
d
x
(
cos
x
+
sin
x
)
n
−
2
]
{\displaystyle \int {\frac {dx}{(\cos x+\sin x)^{n}}}={\frac {1}{n-1}}\left[{\frac {\sin x-\cos x}{(\cos x+\sin x)^{n-1}}}-2(n-2)\int {\frac {dx}{(\cos x+\sin x)^{n-2}}}\right]}
∫
cos
c
x
d
x
cos
c
x
+
sin
c
x
=
x
2
+
1
2
c
ln
|
sin
c
x
+
cos
c
x
|
{\displaystyle \int {\frac {\cos cx\;dx}{\cos cx+\sin cx}}={\frac {x}{2}}+{\frac {1}{2c}}\ln \left|\sin cx+\cos cx\right|}
∫
cos
c
x
d
x
cos
c
x
−
sin
c
x
=
x
2
−
1
2
c
ln
|
sin
c
x
−
cos
c
x
|
{\displaystyle \int {\frac {\cos cx\;dx}{\cos cx-\sin cx}}={\frac {x}{2}}-{\frac {1}{2c}}\ln \left|\sin cx-\cos cx\right|}
∫
sin
c
x
d
x
cos
c
x
+
sin
c
x
=
x
2
−
1
2
c
ln
|
sin
c
x
+
cos
c
x
|
{\displaystyle \int {\frac {\sin cx\;dx}{\cos cx+\sin cx}}={\frac {x}{2}}-{\frac {1}{2c}}\ln \left|\sin cx+\cos cx\right|}
∫
sin
c
x
d
x
cos
c
x
−
sin
c
x
=
−
x
2
−
1
2
c
ln
|
sin
c
x
−
cos
c
x
|
{\displaystyle \int {\frac {\sin cx\;dx}{\cos cx-\sin cx}}=-{\frac {x}{2}}-{\frac {1}{2c}}\ln \left|\sin cx-\cos cx\right|}
∫
cos
c
x
d
x
sin
c
x
(
1
+
cos
c
x
)
=
−
1
4
c
tan
2
c
x
2
+
1
2
c
ln
|
tan
c
x
2
|
{\displaystyle \int {\frac {\cos cx\;dx}{\sin cx(1+\cos cx)}}=-{\frac {1}{4c}}\tan ^{2}{\frac {cx}{2}}+{\frac {1}{2c}}\ln \left|\tan {\frac {cx}{2}}\right|}
∫
cos
c
x
d
x
sin
c
x
(
1
+
−
cos
c
x
)
=
−
1
4
c
cot
2
c
x
2
−
1
2
c
ln
|
tan
c
x
2
|
{\displaystyle \int {\frac {\cos cx\;dx}{\sin cx(1+-\cos cx)}}=-{\frac {1}{4c}}\cot ^{2}{\frac {cx}{2}}-{\frac {1}{2c}}\ln \left|\tan {\frac {cx}{2}}\right|}
∫
sin
c
x
d
x
cos
c
x
(
1
+
sin
c
x
)
=
1
4
c
cot
2
(
c
x
2
+
π
4
)
+
1
2
c
ln
|
tan
(
c
x
2
+
π
4
)
|
{\displaystyle \int {\frac {\sin cx\;dx}{\cos cx(1+\sin cx)}}={\frac {1}{4c}}\cot ^{2}\left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)+{\frac {1}{2c}}\ln \left|\tan \left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)\right|}
∫
sin
c
x
d
x
cos
c
x
(
1
−
sin
c
x
)
=
1
4
c
tan
2
(
c
x
2
+
π
4
)
−
1
2
c
ln
|
tan
(
c
x
2
+
π
4
)
|
{\displaystyle \int {\frac {\sin cx\;dx}{\cos cx(1-\sin cx)}}={\frac {1}{4c}}\tan ^{2}\left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)-{\frac {1}{2c}}\ln \left|\tan \left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)\right|}
∫
sin
c
x
cos
c
x
d
x
=
1
2
c
sin
2
c
x
{\displaystyle \int \sin cx\cos cx\;dx={\frac {1}{2c}}\sin ^{2}cx\,\!}
∫
sin
c
1
x
cos
c
2
x
d
x
=
−
cos
(
c
1
+
c
2
)
x
2
(
c
1
+
c
2
)
−
cos
(
c
1
−
c
2
)
x
2
(
c
1
−
c
2
)
(for
|
c
1
|
≠
|
c
2
|
)
{\displaystyle \int \sin c_{1}x\cos c_{2}x\;dx=-{\frac {\cos(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}-{\frac {\cos(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}\qquad {\mbox{(for }}|c_{1}|\neq |c_{2}|{\mbox{)}}\,\!}
∫
sin
n
c
x
cos
c
x
d
x
=
1
c
(
n
+
1
)
sin
n
+
1
c
x
(for
n
≠
1
)
{\displaystyle \int \sin ^{n}cx\cos cx\;dx={\frac {1}{c(n+1)}}\sin ^{n+1}cx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
∫
sin
c
x
cos
n
c
x
d
x
=
−
1
c
(
n
+
1
)
cos
n
+
1
c
x
(for
n
≠
1
)
{\displaystyle \int \sin cx\cos ^{n}cx\;dx=-{\frac {1}{c(n+1)}}\cos ^{n+1}cx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
∫
sin
n
c
x
cos
m
c
x
d
x
=
−
sin
n
−
1
c
x
cos
m
+
1
c
x
c
(
n
+
m
)
+
n
−
1
n
+
m
∫
sin
n
−
2
c
x
cos
m
c
x
d
x
(for
m
,
n
>
0
)
{\displaystyle \int \sin ^{n}cx\cos ^{m}cx\;dx=-{\frac {\sin ^{n-1}cx\cos ^{m+1}cx}{c(n+m)}}+{\frac {n-1}{n+m}}\int \sin ^{n-2}cx\cos ^{m}cx\;dx\qquad {\mbox{(for }}m,n>0{\mbox{)}}\,\!}
also:
∫
sin
n
c
x
cos
m
c
x
d
x
=
sin
n
+
1
c
x
cos
m
−
1
c
x
c
(
n
+
m
)
+
m
−
1
n
+
m
∫
sin
n
c
x
cos
m
−
2
c
x
d
x
(for
m
,
n
>
0
)
{\displaystyle \int \sin ^{n}cx\cos ^{m}cx\;dx={\frac {\sin ^{n+1}cx\cos ^{m-1}cx}{c(n+m)}}+{\frac {m-1}{n+m}}\int \sin ^{n}cx\cos ^{m-2}cx\;dx\qquad {\mbox{(for }}m,n>0{\mbox{)}}\,\!}
∫
d
x
sin
c
x
cos
c
x
=
1
c
ln
|
tan
c
x
|
{\displaystyle \int {\frac {dx}{\sin cx\cos cx}}={\frac {1}{c}}\ln \left|\tan cx\right|}
∫
d
x
sin
c
x
cos
n
c
x
=
1
c
(
n
−
1
)
cos
n
−
1
c
x
+
∫
d
x
sin
c
x
cos
n
−
2
c
x
(for
n
≠
1
)
{\displaystyle \int {\frac {dx}{\sin cx\cos ^{n}cx}}={\frac {1}{c(n-1)\cos ^{n-1}cx}}+\int {\frac {dx}{\sin cx\cos ^{n-2}cx}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
∫
d
x
sin
n
c
x
cos
c
x
=
−
1
c
(
n
−
1
)
sin
n
−
1
c
x
+
∫
d
x
sin
n
−
2
c
x
cos
c
x
(for
n
≠
1
)
{\displaystyle \int {\frac {dx}{\sin ^{n}cx\cos cx}}=-{\frac {1}{c(n-1)\sin ^{n-1}cx}}+\int {\frac {dx}{\sin ^{n-2}cx\cos cx}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
∫
sin
c
x
d
x
cos
n
c
x
=
1
c
(
n
−
1
)
cos
n
−
1
c
x
(for
n
≠
1
)
{\displaystyle \int {\frac {\sin cx\;dx}{\cos ^{n}cx}}={\frac {1}{c(n-1)\cos ^{n-1}cx}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
∫
sin
2
c
x
d
x
cos
c
x
=
−
1
c
sin
c
x
+
1
c
ln
|
tan
(
π
4
+
c
x
2
)
|
{\displaystyle \int {\frac {\sin ^{2}cx\;dx}{\cos cx}}=-{\frac {1}{c}}\sin cx+{\frac {1}{c}}\ln \left|\tan \left({\frac {\pi }{4}}+{\frac {cx}{2}}\right)\right|}
∫
sin
2
c
x
d
x
cos
n
c
x
=
sin
c
x
c
(
n
−
1
)
cos
n
−
1
c
x
−
1
n
−
1
∫
d
x
cos
n
−
2
c
x
(for
n
≠
1
)
{\displaystyle \int {\frac {\sin ^{2}cx\;dx}{\cos ^{n}cx}}={\frac {\sin cx}{c(n-1)\cos ^{n-1}cx}}-{\frac {1}{n-1}}\int {\frac {dx}{\cos ^{n-2}cx}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
∫
sin
n
c
x
d
x
cos
c
x
=
−
sin
n
−
1
c
x
c
(
n
−
1
)
+
∫
sin
n
−
2
c
x
d
x
cos
c
x
(for
n
≠
1
)
{\displaystyle \int {\frac {\sin ^{n}cx\;dx}{\cos cx}}=-{\frac {\sin ^{n-1}cx}{c(n-1)}}+\int {\frac {\sin ^{n-2}cx\;dx}{\cos cx}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
∫
sin
n
c
x
d
x
cos
m
c
x
=
sin
n
+
1
c
x
c
(
m
−
1
)
cos
m
−
1
c
x
−
n
−
m
+
2
m
−
1
∫
sin
n
c
x
d
x
cos
m
−
2
c
x
(for
m
≠
1
)
{\displaystyle \int {\frac {\sin ^{n}cx\;dx}{\cos ^{m}cx}}={\frac {\sin ^{n+1}cx}{c(m-1)\cos ^{m-1}cx}}-{\frac {n-m+2}{m-1}}\int {\frac {\sin ^{n}cx\;dx}{\cos ^{m-2}cx}}\qquad {\mbox{(for }}m\neq 1{\mbox{)}}\,\!}
also:
∫
sin
n
c
x
d
x
cos
m
c
x
=
−
sin
n
−
1
c
x
c
(
n
−
m
)
cos
m
−
1
c
x
+
n
−
1
n
−
m
∫
sin
n
−
2
c
x
d
x
cos
m
c
x
(for
m
≠
n
)
{\displaystyle \int {\frac {\sin ^{n}cx\;dx}{\cos ^{m}cx}}=-{\frac {\sin ^{n-1}cx}{c(n-m)\cos ^{m-1}cx}}+{\frac {n-1}{n-m}}\int {\frac {\sin ^{n-2}cx\;dx}{\cos ^{m}cx}}\qquad {\mbox{(for }}m\neq n{\mbox{)}}\,\!}
also:
∫
sin
n
c
x
d
x
cos
m
c
x
=
sin
n
−
1
c
x
c
(
m
−
1
)
cos
m
−
1
c
x
−
n
−
1
m
−
1
∫
sin
n
−
2
c
x
d
x
cos
m
−
2
c
x
(for
m
≠
1
)
{\displaystyle \int {\frac {\sin ^{n}cx\;dx}{\cos ^{m}cx}}={\frac {\sin ^{n-1}cx}{c(m-1)\cos ^{m-1}cx}}-{\frac {n-1}{m-1}}\int {\frac {\sin ^{n-2}cx\;dx}{\cos ^{m-2}cx}}\qquad {\mbox{(for }}m\neq 1{\mbox{)}}\,\!}
∫
cos
c
x
d
x
sin
n
c
x
=
−
1
c
(
n
−
1
)
sin
n
−
1
c
x
(for
n
≠
1
)
{\displaystyle \int {\frac {\cos cx\;dx}{\sin ^{n}cx}}=-{\frac {1}{c(n-1)\sin ^{n-1}cx}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
∫
cos
2
c
x
d
x
sin
c
x
=
1
c
(
cos
c
x
+
ln
|
tan
c
x
2
|
)
{\displaystyle \int {\frac {\cos ^{2}cx\;dx}{\sin cx}}={\frac {1}{c}}\left(\cos cx+\ln \left|\tan {\frac {cx}{2}}\right|\right)}
∫
cos
2
c
x
d
x
sin
n
c
x
=
−
1
n
−
1
(
cos
c
x
c
sin
n
−
1
c
x
)
+
∫
d
x
sin
n
−
2
c
x
)
(for
n
≠
1
)
{\displaystyle \int {\frac {\cos ^{2}cx\;dx}{\sin ^{n}cx}}=-{\frac {1}{n-1}}\left({\frac {\cos cx}{c\sin ^{n-1}cx)}}+\int {\frac {dx}{\sin ^{n-2}cx}}\right)\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
∫
cos
n
c
x
d
x
sin
m
c
x
=
−
cos
n
+
1
c
x
c
(
m
−
1
)
sin
m
−
1
c
x
−
n
−
m
−
2
m
−
1
∫
c
o
s
n
c
x
d
x
sin
m
−
2
c
x
(for
m
≠
1
)
{\displaystyle \int {\frac {\cos ^{n}cx\;dx}{\sin ^{m}cx}}=-{\frac {\cos ^{n+1}cx}{c(m-1)\sin ^{m-1}cx}}-{\frac {n-m-2}{m-1}}\int {\frac {cos^{n}cx\;dx}{\sin ^{m-2}cx}}\qquad {\mbox{(for }}m\neq 1{\mbox{)}}\,\!}
also:
∫
cos
n
c
x
d
x
sin
m
c
x
=
cos
n
−
1
c
x
c
(
n
−
m
)
sin
m
−
1
c
x
+
n
−
1
n
−
m
∫
c
o
s
n
−
2
c
x
d
x
sin
m
c
x
(for
m
≠
n
)
{\displaystyle \int {\frac {\cos ^{n}cx\;dx}{\sin ^{m}cx}}={\frac {\cos ^{n-1}cx}{c(n-m)\sin ^{m-1}cx}}+{\frac {n-1}{n-m}}\int {\frac {cos^{n-2}cx\;dx}{\sin ^{m}cx}}\qquad {\mbox{(for }}m\neq n{\mbox{)}}\,\!}
also:
∫
cos
n
c
x
d
x
sin
m
c
x
=
−
cos
n
−
1
c
x
c
(
m
−
1
)
sin
m
−
1
c
x
−
n
−
1
m
−
1
∫
c
o
s
n
−
2
c
x
d
x
sin
m
−
2
c
x
(for
m
≠
1
)
{\displaystyle \int {\frac {\cos ^{n}cx\;dx}{\sin ^{m}cx}}=-{\frac {\cos ^{n-1}cx}{c(m-1)\sin ^{m-1}cx}}-{\frac {n-1}{m-1}}\int {\frac {cos^{n-2}cx\;dx}{\sin ^{m-2}cx}}\qquad {\mbox{(for }}m\neq 1{\mbox{)}}\,\!}
积分只有
sin
和
tan
的函數
[
编辑
]
∫
sin
c
x
tan
c
x
d
x
=
1
c
(
ln
|
sec
c
x
+
tan
c
x
|
−
sin
c
x
)
{\displaystyle \int \sin cx\tan cx\;dx={\frac {1}{c}}(\ln |\sec cx+\tan cx|-\sin cx)\,\!}
∫
tan
n
c
x
d
x
sin
2
c
x
=
1
c
(
n
−
1
)
tan
n
−
1
(
c
x
)
(for
n
≠
1
)
{\displaystyle \int {\frac {\tan ^{n}cx\;dx}{\sin ^{2}cx}}={\frac {1}{c(n-1)}}\tan ^{n-1}(cx)\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
积分只有
cos
和
tan
的函數
[
编辑
]
∫
tan
n
c
x
d
x
cos
2
c
x
=
1
c
(
n
+
1
)
tan
n
+
1
c
x
(for
n
≠
−
1
)
{\displaystyle \int {\frac {\tan ^{n}cx\;dx}{\cos ^{2}cx}}={\frac {1}{c(n+1)}}\tan ^{n+1}cx\qquad {\mbox{(for }}n\neq -1{\mbox{)}}\,\!}
积分只有
sin
和
cot
的函數
[
编辑
]
∫
cot
n
c
x
d
x
sin
2
c
x
=
−
1
c
(
n
+
1
)
cot
n
+
1
c
x
(for
n
≠
−
1
)
{\displaystyle \int {\frac {\cot ^{n}cx\;dx}{\sin ^{2}cx}}={\frac {-1}{c(n+1)}}\cot ^{n+1}cx\qquad {\mbox{(for }}n\neq -1{\mbox{)}}\,\!}
积分只有
cos
和
cot
的函數
[
编辑
]
∫
cot
n
c
x
d
x
cos
2
c
x
=
1
c
(
1
−
n
)
tan
1
−
n
c
x
(for
n
≠
1
)
{\displaystyle \int {\frac {\cot ^{n}cx\;dx}{\cos ^{2}cx}}={\frac {1}{c(1-n)}}\tan ^{1-n}cx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
积分只有
tan
和
cot
的函數
[
编辑
]
∫
tan
m
(
c
x
)
cot
n
(
c
x
)
d
x
=
1
c
(
m
+
n
−
1
)
tan
m
+
n
−
1
(
c
x
)
−
∫
tan
m
−
2
(
c
x
)
cot
n
(
c
x
)
d
x
(for
m
+
n
≠
1
)
{\displaystyle \int {\frac {\tan ^{m}(cx)}{\cot ^{n}(cx)}}\;dx={\frac {1}{c(m+n-1)}}\tan ^{m+n-1}(cx)-\int {\frac {\tan ^{m-2}(cx)}{\cot ^{n}(cx)}}\;dx\qquad {\mbox{(for }}m+n\neq 1{\mbox{)}}\,\!}
查
论
编
三角函数
基本函數
正弦
餘弦
正切
餘切
正割
餘割
反函數
反正弦
反餘弦
反正切
反餘切
反正割
反餘割
少見函數
正矢
餘矢
正弧
餘弧
半正矢
半餘矢
外正割
外餘割
函數分類
正函數
正角
正弦
正切
正割
正矢
正弧
半正矢
外正割
餘函數
餘角
餘弦
餘切
餘割
餘矢
餘弧
半餘矢
外餘割
其他函數
極正弦
弦函數
arc函數
cis函數
餘cis函數
cas函數
arg函數
atan2
古德曼函數
符號
sin
cos
tan
cot
sec
csc
exs
exc
ver
cvs
vcs
cvc
hav
hcv
hvc
hcc
arc
crd
sag
apo
(
英语
:
Apothem
)
cis
cas
arg
双曲函数
雙曲正弦
雙曲餘弦
相關概念
割圓八線
同界角
辐角
單位圓
圓心角
週期性
定理
正弦定理
餘弦定理
正切定理
餘切定理
半正矢定理
勾股定理
恒等式
三角函數恆等式
雙曲三角函數恆等式
正切半角公式
三分之一角公式
餘函數恆等式
诱导公式
半正矢公式
其他
三角函數精確值
三角函数积分表
三角函数表
三角多項式
三角函数线
正弦曲線
雙曲三角函數
查
论
编
积分表
有理函數
無理函數
三角函數
反三角函數
雙曲函數
反雙曲函數
指數函數
對數函數
高斯函數
分类
:
积分表
三角学
隐藏分类:
自2017年12月缺少来源的条目