氧氣地質歷史

維基百科,自由的百科全書
地球大氣層氧氣的含量。紅線和綠線分別代表上限和下限。變化可分為五個階段:
第一階段(38.5-24.5億年前):大氣層中幾乎沒有氧氣
第二階段(24.5-18.5億年前):氧氣逐漸產生,但溶解於海洋中,與岩石進行氧化反應
第三階段(18.5-8.5億年前):氧氣從海洋中釋放出來,但被地表吸收,或轉變成臭氧形成臭氧層
第四、第五階段(8.5億年前至今):氧氣開始在大氣層中積累[1]

光合作用發生之前,地球大氣中沒有氧氣[2]。35億年前,原核生物通過光合作用產生氧氣[3],但氧氣氧化了裸露的金屬氧化鐵在海底沉積,形成條狀鐵層[1]大氧化事件開始5000萬年後,大氣層中才開始積累氧氣[4][5]。由於此時植物還沒有誕生,前寒武紀產氧速率較慢,濃度不到今天的10%。此時氧氣濃度波動較大,19億年前,大氣層可能不存在氧氣[6]。此時氧氣濃度對生命影響較小。寒武紀以後多細胞生物大量繁殖,氧氣濃度波動才會使生物大量滅絕[7]

氧氣濃度上升,生命演化逐漸複雜,因為有氧呼吸無氧呼吸的物質利用率更高[8][9][10]寒武紀以來,大氣層氧氣濃度在15%到35%之間波動[11]。氧氣濃度於3億年前石炭紀時達到峰值,此時大氣氧含量約為35%。氧濃度高的大氣使節肢動物體型龐大[10]。雖然人類燃燒化石燃料等活動對二氧化碳大氣含量影響顯著,但對於氧氣的影響微乎其微[12]

生物影響[編輯]

-4500 —
-4250 —
-4000 —
-3750 —
-3500 —
-3250 —
-3000 —
-2750 —
-2500 —
-2250 —
-2000 —
-1750 —
-1500 —
-1250 —
-1000 —
-750 —
-500 —
-250 —
0 —

大氧化事件中,大氣氧含量猛增,許多厭氧生物因此死亡[10]。氧氣濃度變化會改變生物進化的速度,是阿瓦隆大爆發寒武紀大爆發可能的原因。氧氣濃度也會影響動物體型大小和生物多樣性[13]。數據顯示,大氧化事件後不久,生物數量猛增100倍[13]。氧氣濃度也會影響生物體型。石炭紀時期大氣氧含量約為35%,節肢動物體型龐大,而石炭紀之後昆蟲體型逐漸變小[10]

一種觀點認為,氧濃度上升會加快生物進化的速率。最後一次雪球地球結束時,大氣氧含量增加,開始出現多細胞生命。但是這種關聯並不明顯,理論也遭到質疑[10]。氧濃度較低時,生物尚未進化到可以固氮的階段,可利用的含氮有機物較少,存在周期性的「氮危機」,海洋可能不適合生物生存[14][10]。氧氣濃度上升只是生物進化的前提之一[10]。氧濃度上升後,動物立即出現,並保存在化石記錄中[10]。此外,類似於大氣缺氧,海洋缺氮等不適於宏觀生命生存的條件,在寒武紀早期和白堊紀晚期時常出現,但是對多細胞生物沒有明顯的影響[10]。這可能表明在寒武紀以前,海洋沉積物反映大氣和地殼的化學組成的方式與現在不同,因為那時沒有浮游生物進行物質循環[7][10]

富氧大氣能更快的風化岩石,促進等元素的循環,對物種的新陳代謝、生長繁殖起重要作用[2]

參考[編輯]

  1. ^ 1.0 1.1 Holland, H. D. The oxygenation of the atmosphere and oceans. Philosophical Transactions of the Royal Society B: Biological Sciences. 2006, 361 (1470): 903–915. PMC 1578726可免費查閱. PMID 16754606. doi:10.1098/rstb.2006.1838. 
  2. ^ 2.0 2.1 Zimmer, Carl. Earth's Oxygen: A Mystery Easy to Take for Granted. New York Times. 2013-10-03 [2013-10-03]. (原始內容存檔於2013-10-03). 
  3. ^ Dutkiewicz, A.; Volk, H.; George, S. C.; Ridley, J.; Buick, R. Biomarkers from Huronian oil-bearing fluid inclusions: an uncontaminated record of life before the Great Oxidation Event. Geology. 2006, 34 (6): 437. Bibcode:2006Geo....34..437D. doi:10.1130/G22360.1. 
  4. ^ Anbar, A.; Duan, Y.; Lyons, T.; Arnold, G.; Kendall, B.; Creaser, R.; Kaufman, A.; Gordon, G.; Scott, C.; Garvin, J.; Buick, R. A whiff of oxygen before the great oxidation event?. Science. 2007, 317 (5846): 1903–1906. Bibcode:2007Sci...317.1903A. PMID 17901330. S2CID 25260892. doi:10.1126/science.1140325. 
  5. ^ Dole, M. The Natural History of Oxygen. The Journal of General Physiology. 1965, 49 (1): Suppl:Supp5–27. PMC 2195461可免費查閱. PMID 5859927. doi:10.1085/jgp.49.1.5. 
  6. ^ Frei, R.; Gaucher, C.; Poulton, S. W.; Canfield, D. E. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature. 2009, 461 (7261): 250–253. Bibcode:2009Natur.461..250F. PMID 19741707. S2CID 4373201. doi:10.1038/nature08266. 簡明摘要. 
  7. ^ 7.0 7.1 Butterfield, N. J. Macroevolution and macroecology through deep time. Palaeontology. 2007, 50 (1): 41–55. S2CID 59436643. doi:10.1111/j.1475-4983.2006.00613.x可免費查閱. 
  8. ^ Schmidt-Rohr, K. (2020). "Oxygen Is the High-Energy Molecule Powering Complex Multicellular Life: Fundamental Corrections to Traditional Bioenergetics". ACS Omega 5: 2221-2233. http://dx.doi.org/10.1021/acsomega.9b03352頁面存檔備份,存於網際網路檔案館).
  9. ^ Freeman, Scott. Biological Science, 2nd. Upper Saddle River, NJ: Pearson – Prentice Hall. 2005: 214, 586. ISBN 978-0-13-140941-5. 
  10. ^ 10.00 10.01 10.02 10.03 10.04 10.05 10.06 10.07 10.08 10.09 Butterfield, N. J. Oxygen, animals and oceanic ventilation: An alternative view. Geobiology. 2009, 7 (1): 1–7. PMID 19200141. S2CID 31074331. doi:10.1111/j.1472-4669.2009.00188.x. 
  11. ^ Berner, R. A. Atmospheric oxygen over Phanerozoic time. Proceedings of the National Academy of Sciences of the United States of America. Sep 1999, 96 (20): 10955–10957. Bibcode:1999PNAS...9610955B. ISSN 0027-8424. PMC 34224可免費查閱. PMID 10500106. doi:10.1073/pnas.96.20.10955可免費查閱. 
  12. ^ Emsley, John. Oxygen. Nature's Building Blocks: An A-Z Guide to the Elements. Oxford, England, UK: Oxford University Press. 2001: 297–304. ISBN 978-0-19-850340-8. 
  13. ^ 13.0 13.1 Payne, J. L.; McClain, C. R.; Boyer, A. G; Brown, J. H.; Finnegan, S.; et al. (2011). "The evolutionary consequences of oxygenic photosynthesis: a body size perspective". Photosynth. Res. 1007: 37-57. DOI 10.1007/s11120-010-9593-1
  14. ^ Navarro-González, Rafaell; McKay, Christopher P.; Nna Mvondo, Delphine. A possible nitrogen crisis for Archaean life due to reduced nitrogen fixation by lightning (PDF). Nature. Jul 2001, 412 (5 July 2001): 61–64 [2022-02-13]. Bibcode:2001Natur.412...61N. PMID 11452304. S2CID 4405370. doi:10.1038/35083537. hdl:10261/8224可免費查閱. (原始內容存檔 (PDF)於2021-03-08). 

外部連結[編輯]