在理論物理學中,M2膜是一種空間中伸展的數學對象,應用於弦理論和相關的其他理論(如M理論、F理論)中。具體來說,它是十一維超重力的解,具有三維世界體積。
M2膜可理解為 對稱的解(這裏S為龐卡赫空間),藉由p膜擬設解決超重力的運動方程式。這個解可由各向同性座標的度規張量和3-形式的規範場得出。可表示為:
這裏 是閔可夫斯基時空 度規,並區別世界體積 和變換座標。至於常數是膜上對應的諾特荷,它由結束於膜的橫向空間邊界的積分 所得出。
|
---|
基本對象 | | |
---|
背景理論 | |
---|
微擾弦理論 | |
---|
非微擾結果 | |
---|
現象學 | |
---|
數學方法 | |
---|
幾何 | |
---|
規範場論 | |
---|
超對稱 | |
---|
理論家 | |
---|
|