本页使用了标题或全文手工转换

维基百科,自由的百科全书
跳到导航 跳到搜索

鈇   114Fl
氫(非金屬) 氦(惰性氣體)
鋰(鹼金屬) 鈹(鹼土金屬) 硼(類金屬) 碳(非金屬) 氮(非金屬) 氧(非金屬) 氟(鹵素) 氖(惰性氣體)
鈉(鹼金屬) 鎂(鹼土金屬) 鋁(貧金屬) 矽(類金屬) 磷(非金屬) 硫(非金屬) 氯(鹵素) 氬(惰性氣體)
鉀(鹼金屬) 鈣(鹼土金屬) 鈧(過渡金屬) 鈦(過渡金屬) 釩(過渡金屬) 鉻(過渡金屬) 錳(過渡金屬) 鐵(過渡金屬) 鈷(過渡金屬) 鎳(過渡金屬) 銅(過渡金屬) 鋅(過渡金屬) 鎵(貧金屬) 鍺(類金屬) 砷(類金屬) 硒(非金屬) 溴(鹵素) 氪(惰性氣體)
銣(鹼金屬) 鍶(鹼土金屬) 釔(過渡金屬) 鋯(過渡金屬) 鈮(過渡金屬) 鉬(過渡金屬) 鎝(過渡金屬) 釕(過渡金屬) 銠(過渡金屬) 鈀(過渡金屬) 銀(過渡金屬) 鎘(過渡金屬) 銦(貧金屬) 錫(貧金屬) 銻(類金屬) 碲(類金屬) 碘(鹵素) 氙(惰性氣體)
銫(鹼金屬) 鋇(鹼土金屬) 鑭(鑭系元素) 鈰(鑭系元素) 鐠(鑭系元素) 釹(鑭系元素) 鉕(鑭系元素) 釤(鑭系元素) 銪(鑭系元素) 釓(鑭系元素) 鋱(鑭系元素) 鏑(鑭系元素) 鈥(鑭系元素) 鉺(鑭系元素) 銩(鑭系元素) 鐿(鑭系元素) 鎦(鑭系元素) 鉿(過渡金屬) 鉭(過渡金屬) 鎢(過渡金屬) 錸(過渡金屬) 鋨(過渡金屬) 銥(過渡金屬) 鉑(過渡金屬) 金(過渡金屬) 汞(過渡金屬) 鉈(貧金屬) 鉛(貧金屬) 鉍(貧金屬) 釙(貧金屬) 砈(類金屬) 氡(惰性氣體)
鍅(鹼金屬) 鐳(鹼土金屬) 錒(錒系元素) 釷(錒系元素) 鏷(錒系元素) 鈾(錒系元素) 錼(錒系元素) 鈽(錒系元素) 鋂(錒系元素) 鋦(錒系元素) 鉳(錒系元素) 鉲(錒系元素) 鑀(錒系元素) 鐨(錒系元素) 鍆(錒系元素) 鍩(錒系元素) 鐒(錒系元素) 鑪(過渡金屬) 𨧀(過渡金屬) 𨭎(過渡金屬) 𨨏(過渡金屬) 𨭆(過渡金屬) 䥑(預測為過渡金屬) 鐽(預測為過渡金屬) 錀(預測為過渡金屬) 鎶(過渡金屬) 鉨(預測為貧金屬) 鈇(貧金屬) 鏌(預測為貧金屬) 鉝(預測為貧金屬) 鿬(預測為鹵素) 鿫(預測為惰性氣體)




(Uhq)
概況
名稱·符號·序數鈇(Flerovium)·Fl·114
元素類別貧金屬
·週期·14 ·7·p
標準原子質量[289]
电子排布[Rn] 5f14 6d10 7s2 7p2
(預測[1]
2, 8, 18, 32, 32, 18, 4
(預測)
鈇的电子層(2, 8, 18, 32, 32, 18, 4 (預測))
歷史
發現聯合核研究所勞倫斯利福摩爾國家實驗室(1999年)
物理性質
物態氣體(預測)[1][2]
熔点時液體密度14(預測)[3] g·cm−3
沸點~ 210 K,~ −60 °C,~ −80(預測)[4][2] °F
蒸氣壓
原子性質
氧化态2, 4(預測)[1]
电离能第一:823.9(預測)[1] kJ·mol−1
第二:1621.0(預測)[2] kJ·mol−1
原子半径160(估值)[1] pm
共价半径143(估值)[5] pm
雜項
CAS号54085-16-4
最穩定同位素
主条目:鈇的同位素
同位素 丰度 半衰期 (t1/2) 衰變
方式 能量MeV 產物
289Fl syn 2.6 s α 9.82,9.48 285Cn
289mFl? syn 1.1 min α 9.67 285mCn?
288Fl syn 0.8 s α 9.94 284Cn
287Fl syn 0.48 s α 10.02 283Cn
287mFl?? syn 5.5 s α 10.29 283mCn??
286Fl syn 0.13 s 40% α 10.19 282Cn
60% SF -
285Fl syn 125 ms α 281Cn

[6][7]拼音注音ㄈㄨ粤拼fu1,音同「夫」;英語:Flerovium[8][9]),是一種放射性人工合成化學元素,其化學符號Fl原子序數为114,具有極高的放射性

科學家至今觀測到約80個鈇原子,其中50個是直接合成的,其餘30個則是在更重元素()的衰變產物中發現的。所有衰變都來自285-289Fl,一共5個質量數相鄰的同位素。已知壽命最長的同位素為289Fl,半衰期約為2.6秒。

2007年進行的化學研究指出,鈇的化學特性和非常不同。由於某些相對論性效應,它是第一種表現出惰性氣體特性的超重元素。[10]

概述[编辑]

A graphic depiction of a nuclear fusion reaction
核聚变反应的图形描述。两个原子核融合成一个,并发射出一个中子。在这一刻,这个反应和用来创造新元素的反应是相似的,唯一可能的区别是它有时会释放几个中子,或者根本不释放中子。
外部视频链接
video icon 基于澳大利亚国立大学的计算,核聚变未成功的可视化[11]

一个超重元素[a]原子核是在两个不同大小的原子核[b]的聚变中产生的。粗略地说,两个原子核的质量之差越大,两者发生反应的可能性就越大。[17]由较重原子核组成的物质会做成靶子,它会被较轻原子核的粒子束轰击。两个原子核只能在距离足够近的时候,才能核聚变成一个原子核。通常,原子核(全部都有正电荷)会因为静电排斥而相互排斥。只有两个原子核的距离足够短时,强核力才能克服这个排斥力。粒子束因此被粒子加速器大大加速,以使这种排斥力与粒子束的速度相比变得微不足道。[18]只是靠的足够近不足以使两个原子核聚变。当两个原子核逼近彼此时,它们通常会在一起约10−20秒,然后裂变(产物不需要和反应物相同),而不是形成一个单独的原子核。[18][19]如果聚变发生了,两个原子核产生的一个原子核会处于激发态[20],它被称为复合原子核英语compound nucleus,非常不稳定。[18]为了达到更稳定的状态,这个暂时存在的原子核可能会直接核裂变[21]或是放出一些带走激发能量的中子。如果中子不足以带走这些激发能量,复合原子核就会放出γ射线。这个过程会在原子核碰撞后的10−16秒发生,并创造出更稳定的原子核。[21]联合工作团队英语IUPAC/IUPAP Joint Working Party(JWP)定义,一个化学元素的原子核只有10−14秒内不进行放射性衰变,才能被识别出来。这个值大约是一个原子核得到它的外层电子,显示其化学性质所需的时间。[22][c]

粒子束穿过目标后,会到达下一个腔室——分离室。如果反应产生了一个新的原子核,它就会被这个粒子束携带。[24]在分离室中,新产生的原子核会从其它核素(原本的粒子束和其它反应产物)中分离,[d]并转移到半导体探测器英语Semiconductor detector中,在这里停止原子核。这时标记撞击探测器的确切位置、能量和到达时间。[24]这个转移需要10−6秒的时间。也就是说,这个原子核需要存活这么长的时间才能被检测到。[27]衰变被记录后,这个原子核被再次记录,并测量位置、衰变能量和衰变时间。[24]

原子核的稳定性源自于强核力。然而,强核力的作用距离很短,随着原子核越来越大,强核力对最外层的核子质子和中子)的影响减弱。同时,原子核会被质子之间,范围不受限制的静电排斥力撕裂。[28]超重元素[29]的主要衰变方式——α衰变自发裂变都是这种排斥引起的。[e]α衰变由发射出去的α粒子记录,在实际衰变之前很容易确定衰变产物。如果这样的衰变或一系列连续衰变产生了一个已知的原子核,则可以很容易地确定反应的原始产物。[f](衰变链中的所有衰变确实彼此相关,因为这些衰变的位置确定的,它们必须在同一个地方。)[24] 已知的原子核可以通过它经历的衰变的特定特征来识别,例如衰变能量(或更具体地说,发射粒子的动能)。[g]然而,自发裂变会产生各种分裂产物,因此无法从其分裂产物确定原始核素。[h]

因此,旨在合成超重元素的物理学家可以获得的信息是探测器收集到的信息:粒子到达探测器的位置、能量和时间,以及粒子衰变的信息。物理学家分析了这些数据并试图得出结论,它确实是由一种新元素引起的,不可能是由与声称的核素不同的核素引起的。通常,如果提供的数据不足以得出一个新元素确实是被创造出来的结论,并且对观察到的影响没有其他解释,就可能在解释数据时出现错误。[i]

歷史[编辑]

發現[编辑]

1998年12月,位於俄羅斯杜布納聯合核研究所(JINR)的科學家使用48Ca離子撞擊244Pu目標體,合成一個鈇原子。該原子以9.67 MeV的能量進行α衰變,半衰期為30秒。該原子其後被確認為289Fl同位素。這項發現在1999年1月公佈。[41]然而,之後的實驗並未能重現所觀測到的衰變鏈。因此這顆原子的真正身份仍待確認,有可能是穩定的同核異構體289mFl。

1999年3月,同一個團隊以242Pu代替244Pu目標體,以合成其他的鈇同位素。這次,他們成功合成兩個鈇原子,原子以10.29 MeV的能量進行α衰變,半衰期為5.5秒。這兩個原子確認為287Fl。[42]其他的實驗同樣未能重現這次實驗的結果,因此真正產生的原子核身份一樣不能被確定,但有可能是穩定的同核異構體287mFl。

杜布納的團隊在1999年6月進行實驗,成功製成鈇。這項結果是受到公認的。他們重複進行244Pu的反應,並產生兩個鈇原子,原子以9.82 MeV能量進行α衰變,半衰期為2.6秒。[43]

研究人員一開始把所產生的原子認定為288Fl,但2002年12月進行的研究工作則將結論更改為289Fl。[44]

2009年5月,IUPAC的聯合工作組發布的發現報告,其中提到283Cn的發現。[45]由於287Fl和291Lv(見下)的合成數據牽涉到283Cn,因此這也意味著鈇的發現得到證實。

2009年1月,伯克利團隊證實287Fl和286Fl的發現。接著在2009年7月,德國重離子研究所又證實288Fl和289Fl的發現。

2011年6月11日,IUPAC證實鈇的存在。[46]

命名[编辑]

Flerovium(Fl)是IUPAC在2012年5月30日正式採用的,以纪念苏联原子物理学家格奥尔基·弗廖罗夫[47]。此前根据IUPAC元素系統命名法所產生的臨時名稱為Ununquadium(Uuq)[48]。科學家通常稱之為“元素114”(或E114)。

中文命名[编辑]

2012年6月2日,中華民國國家教育研究院化學名詞審譯委員會暫定以作為該元素的中文名稱。[6] 2013年7月,中華人民共和國全國科學技術名詞審定委員會通過以𫓧(读音同「夫」)為中文定名。[7][49]

未來的實驗[编辑]

日本理化學研究所的一個團隊已表示有計劃研究以下的冷聚變反應:

Flerov核反應實驗室在未來有計劃研究在239Pu和48Ca反應中合成的較輕的鈇同位素。

也有計劃使用不同發射體能量再次用244Pu進行反應,以進一步了解2n通道,從而發現新的同位素290Fl。

同位素與核特性[编辑]

核合成[编辑]

能產生Z=114复核的目標、發射體組合[编辑]

下表列出各種可用以產生114號元素的目標、發射體組合。

目標 發射體 CN 結果
208Pb 76Ge 284Fl 至今失敗
232Th 54Cr 286Fl 尚未嘗試
238U 50Ti 288Fl 尚未嘗試
244Pu 48Ca 292Fl 反應成功
242Pu 48Ca 290Fl 反應成功
239Pu 48Ca 287Fl 尚未嘗試
248Cm 40Ar 288Fl 尚未嘗試
249Cf 36S 285Fl 尚未嘗試

冷聚變[编辑]

208Pb(76Ge,xn)284−xFl[编辑]

第一次以冷聚變合成鈇的實驗於2003年法國國家大型重離子加速器(GANIL)進行,產量限制為1.2 pb時並沒有合成任何原子。

熱聚變[编辑]

244Pu(48Ca,xn)292−xFl (x=3,4,5)[编辑]

杜布納的一個團隊於1998年11月首次嘗試合成鈇。他們探測到一個源自289Fl的長衰變鏈。[41]在1999年重複進行的實驗再次合成了兩個鈇原子,這次則是288Fl。[43]團隊在2002年進一步研究了這項反應。在測量3n、4n和5n中子蒸發激發函數時,他們探測到3個289Fl原子、12個288Fl原子及1個新同位素287Fl原子。根據這些結果,第一個被探測到的原子是290Fl或289mFl,而接著的兩個原子是289Fl。[44]2007年4月利用285Cn來研究鎶的化學特性時,科學家再次進行這條反應。瑞士保羅謝勒研究所和Flerov核反應實驗室直接探測到兩個288Fl原子,這為對鈇的首次化學研究打下基礎。

2008年6月,科學家再用該反應來產生289Fl同位素,以研究鈇的化學特性。這次發現了一個鈇原子,這得以確認它的屬性類似於惰性氣體

2009年5月至7月,德國重離子研究所第一次研究了這個反應,再進一步嘗試合成Ts。團隊成功確認了288Fl和289Fl的合成與衰變數據,合成的原子中,前者有9個,而後者有4個。[50]

242Pu(48Ca,xn)290−x114 (x=2,3,4,5)[编辑]

杜布納的團隊首先在1999年3月至4月研究了這項反應,並探測到兩個287Fl原子。[42]由於有關283Cn的數據有衝突,所以科學家在2003年9月重複進行了該實驗,以確認287Fl和283Cn的衰變數據(詳見)。他們通過測量2n、3n和4n激發函數得到了288Fl、287Fl和新同位素286Fl的衰變數據。[51][52]

2006年4月,保羅謝勒研究所和Flerov核反應實驗室的合作計劃曾使用過這項反應來產生283Cn,以研究鎶的屬性。在2007年4月進行的一項確認實驗中,團隊直接探測到287Fl,並能夠取得有關鈇原子化學特性的最初數據。

2009年1月,伯克利的團隊使用伯克利充氣分離器(BGS)和新得到的242Pu樣本繼續進行研究,通過以上反應嘗試合成鈇。2009年9月,他們公佈成功探測到2個鈇原子,分別為287Fl和286Fl,證實了Flerov核反應實驗室取得的衰變數據,但是所測量的截面更低。[53]

2009年4月,瑞士和俄羅斯的合作研究計劃再次使用以上反應進行了對鈇化學屬性的研究,其中探測到一個283Cn原子。

2010年12月,勞倫斯伯克利國家實驗室的團隊公佈發現了285Fl原子,並觀測到5個衰變產物的新同位素。

作為衰變產物[编辑]

科學家也曾在衰變鏈中觀測到鈇的同位素。

蒸發殘留 觀測到的鈇同位素
293Lv 289Fl [52][54]
292Lv 288Fl [52]
291Lv 287Fl [44]
294Og, 290Lv 286Fl [55]

撤回的同位素[编辑]

285Fl[编辑]

在1999年發現293Og的報告中,285Fl是以11.35 MeV能量進行α衰變的,半衰期為0.58 ms。發現者於2001年撤回了這項發現。這個同位素最後是在2010年被合成的,其衰變屬性和1999年報告中的不符,意味著撤回的數據是錯誤的。

同位素發現時序[编辑]

同位素 發現年份 核反應
285Fl 2010年 242Pu(48Ca,5n)
286Fl 2002年 249Cf(48Ca,3n) [55]
287aFl 2002年 244Pu(48Ca,5n)
287bFl ?? 1999年 242Pu(48Ca,3n)
288Fl 2002年 244Pu(48Ca,4n)
289aFl 1999年 244Pu(48Ca,3n)
289bFl ? 1998年 244Pu(48Ca,3n)

原子序為114复核的裂變[编辑]

2000年至2004年期間Flerov核反應實驗室進行了幾項研究292Fl複核衰變屬性的實驗。他們所使用的核反應為244Pu+48Ca。結果顯示,這些複核進行裂變時主要發射完整軌域原子核,如82
132
Sn。另一項發現是,使用48Ca和58Fe作為發射體的聚變裂變路徑相似,這表示未來在合成超重元素時有可能使用58Fe發射體。[56]

核異構體[编辑]

289Fl[编辑]

第一次合成的鈇同位素為289Fl,它以9.71 MeV的能量進行α衰變,時長為30秒。之後的直接合成實驗中並未被觀測到這種現象。然而,在一次293Lv的合成實驗中,所測得的衰變鏈釋放了9.63 MeV能量的α粒子,時長為2.7秒。之後其他的衰變都與289Fl的相似。這很明確地表明,這些衰變活動都是來自於同核異構體的。近期實驗中並未出現類似的活動,表示這種同核異構體的產量約為基態的20%,而第一個實驗觀測到的現象只是巧合。要解釋這個問題,必須進行更多的研究。

287Fl[编辑]

使用242Pu作為目標的初次實驗中,所觀測到的287Fl同位素進行衰變時放射能量為10.29 MeV的α粒子,時常為5.5秒。其衰變產物再進行自發裂變,時常符合先前合成的283Cn。後來科學家再沒有觀測到同樣的衰變活動(詳見)。不過,兩者的相關性表示實驗結果是非隨機的,而合成方式是不會影響同核異構體的生成的。這些問題要經過更多研究才能解決。

同位素產量[编辑]

下表列出直接合成鈇的聚變核反應的截面和激發能量。粗體數據代表從激發函數算出的最大值。+代表觀測到的出口通道。

冷聚變[编辑]

發射體 目標 CN 1n 2n 3n
76Ge 208Pb 284Fl <1.2 pb

熱聚變[编辑]

發射體 目標 CN 2n 3n 4n 5n
48Ca 242Pu 290Fl 0.5 pb, 32.5 MeV 3.6 pb, 40.0 MeV 4.5 pb, 40.0 MeV <1.4 pb, 45.0 MeV
48Ca 244Pu 292Fl 1.7 pb, 40.0 MeV 5.3 pb, 40.0 MeV 1.1 pb, 52.0 MeV

理論計算[编辑]

蒸發殘留物截面[编辑]

下表列出各種目標-發射體組合,並給出最高的預計產量。

MD = 多面;DNS = 雙核系統; σ = 截面

目標 發射體 CN 通道(產物) σmax 模型 參考資料
208Pb 76Ge 284Fl 1n (283Fl) 60 fb DNS [57]
208Pb 73Ge 281Fl 1n (280Fl) 0.2 pb DNS [57]
238U 50Ti 288Fl 2n (286Fl) 60 fb DNS [58]
244Pu 48Ca 292Fl 4n (288Fl) 4 pb MD [59]
242Pu 48Ca 290Fl 3n (287Fl) 3 pb MD [59]

衰變特性[编辑]

對Fl不同同位素半衰期的理論估算與實驗結果相符。[60][61]沒有裂變的同位素298Fl的α衰變半衰期預計有17天。[62][63]

尋找穩定島:298Fl[编辑]

根據宏觀—微觀理論[來源請求],原子序114是下一個幻數。這意味著,該原子核呈球體狀,而其基態將會有高和寬的裂變位壘,因此自發裂變部分的半衰期會很長。

當原子序為114時,宏觀—微觀理論表示下一個中子幻數為184,因此298Fl原子核很有可能會是繼208Pb(原子序82、中子數126)之後下一個滿足雙重幻數的原子核。298Fl位於理論預計的“穩定島”的中央。然而,其他運用相對論平均場理論的計算顯示,原子序120、122和126才是幻數。有一種可能性是,穩定性並不在單一數字上飆升,而是在原子序從114到126時都是較高的。

由於偶核效應,297的軌域修正能量最低,因此裂變位壘最高。由於較高的裂變位壘,任何在這穩定島上的原子核都只會進行α衰變,所以半衰期最長的原子核將會是298Fl。半衰期預計很難超過10分鐘,除非中子數為184的中子軌域實際比理論上預計的更穩定。另外,由於有奇數中子,297Fl的半衰期可能會更长。

化學屬性[编辑]

推算的化學屬性[编辑]

氧化態[编辑]

鈇預計屬於7p系,並是元素週期表中14 (IVA)族最重的成員,位於之下。這一族的氧化態為+IV,而較重的元素也表現出較強的+II態,這是因為惰性電子對效應的+II和+IV態強度相近。的+II態比+IV態強。因此鈇應該繼續這一趨勢,有著氧化性的+IV態和穩定的+II態。

化學特性[编辑]

鈇的化學特性應與鉛相近,能形成FlO、FlF2、FlCl2、FlBr2和FlI2。如果其+IV態能夠進行化學反應,它將只能形成FlO2和FlF4。它也有可能形成混合氧化物Fl3O4,類似於Pb3O4

一些研究指出鈇的化學特性可能和惰性氣體更接近。[10][已过时]

實驗化學[编辑]

原子氣態[编辑]

2007年4月至5月,瑞士保羅謝勒研究所與Flerov核反應實驗室的合作計劃研究了的化學特性。第一項反應為242Pu(48Ca,3n)287Fl,第二項反應為244Pu(48Ca,4n)288Fl。他們將所生成的原子在平面上的吸收屬性與氡的屬性作了比較。第一項實驗探測到3個283Cn原子,但同時也似乎探測到了1個287Fl原子。這項結果是出乎意料的,因為要移動生成了的原子需時大約2秒,鈇原子應該在被吸收前已經衰變了。第二個反應產生了2個288Fl原子和1個289Fl原子。其中兩個原子的吸收特性符合惰性氣體的特性。2008年進行的實驗肯定了這一重要的結果,所產生的289Fl原子特性也符合先前的數據,表示鈇和金發生交互作用時類似於惰性氣體。[64]

參見[编辑]

注释[编辑]

  1. ^ 核物理学中,如果一个元素有高原子序,就可以被称为重元素。82号元素就是一个重元素的例子。“超重元素”这一词通常指原子序大于103的元素(尽管也有其它的定义,例如原子序大于100[12]或112。[13]有时,这一词和锕系后元素是同义词,将超重元素的上限定在还未发现的超锕系元素的开始。)[14](那个元素的)“超重同位素”和“超重核素”顾名思义——分别是(那个元素的)高质量同位素和有高质量的核素。
  2. ^ 2009年,一个由尤里·奥加涅相引领的团队在JINR发表了他们通过对称的136Xe + 136Xe反应,尝试合成钅黑的结果。他们未能在这个反应中观察到单个原子,因此对截面设置了上限,即核反应概率的度量为2.5 pb[15]作为比较,发现钅黑的反应208Pb + 58Fe的截面约为20 pb(进一步来说,为19+19
    -11
     pb),符合发现者的预测。[16]
  3. ^ 这个值也标志着普遍接受的复合原子核寿命上限。[23]
  4. ^ 这种分离是基于产生的原子核会比未反应的粒子束更慢地通过目标。分离器中包含电场和磁场,它们对运动粒子的影响会因粒子的特定速度而被抵消。[25]飞行时间质谱法英语Time-of-flight mass spectrometry和反冲能量的测量也有助于这种分离,两者结合可以估计原子核的质量。[26]
  5. ^ 不是所有放射性衰变都是因为静电排斥力导致的。举个例子,β衰变弱核力导致的。[30]
  6. ^ 由于原子核的质量不是直接测量的,而是根据另一个原子核的质量计算得出的,因此这种测量称为间接测量。直接测量也是有可能的,但在大多数情况下,它们仍然无法用于超重原子核。[31]2018年,LBNL首次直接测量了超重原子核的质量,[32]它的质量是根据转移后原子核的位置确定的(位置有助于确定其轨迹,这与原子核的质荷比有关,因为转移是在有磁铁的情况下完成的)。[33]
  7. ^ 如果在真空中发生衰变,那么由于孤立系统在衰变前后的总动量必须保持守恒,衰变产物也将获得很小的速度。这两个速度的比值以及相应的动能比值与两个质量的比值成反比。衰变能量等于α粒子和衰变产物的已知动能之和。[34]这些计算也适用于实验,但不同之处在于原子核在衰变后不会移动,因为它与探测器相连。
  8. ^ 自发裂变是由苏联科学家格奥尔基·弗廖罗夫发现的。[35]LBL的科学家们认为自发裂变的信息不足以声称合成元素。他们认为对自发裂变的研究还不够充分,无法将其用于识别新元素,因为很难确定复合原子核是不是仅喷射中子,而不是质子或α粒子等带电粒子。[23]因此,他们更喜欢通过连续的α衰变将新的同位素与已知的同位素联系起来。[35]
  9. ^ 举个例子,1957年,元素102在瑞典斯德哥尔摩省斯德哥尔摩的诺贝尔物理研究所被错误地鉴定。[36]早先没有关于该元素发现的明确声明,所以由它的瑞典、美国和英国发现者命名为nobelium。后来证明这个元素的鉴定是错误的。[37]第二年,RL无法重现瑞典的结果,而是宣布他们合成了该元素,这一说法后来也被驳回。[37] JINR坚持认为他们是第一个发现该元素的人,并为新元素建议命名为joliotium[38]而这个名称也没有被接受(JINR后来认为元素102的命名是仓促的)。[39]这个名称是在IUPAC对元素发现优先权的裁决的书面答复中提出的,该裁决于1992年9月29日签署。[39]但由于其广泛使用,“nobelium”这个名称仍然保持不变。[40]

參考資料[编辑]

  1. ^ 1.0 1.1 1.2 1.3 1.4 Haire, Richard G. Transactinides and the future elements. Morss; Edelstein, Norman M.; Fuger, Jean (编). The Chemistry of the Actinide and Transactinide Elements 3rd. Dordrecht, The Netherlands: Springer Science+Business Media. 2006. ISBN 1-4020-3555-1. 
  2. ^ 2.0 2.1 2.2 Seaborg, G. T. Transuranium element. Encyclopædia Britannica. [2010-03-16]. (原始内容存档于2010-11-30). 
  3. ^ Fricke, Burkhard. Superheavy elements: a prediction of their chemical and physical properties. Recent Impact of Physics on Inorganic Chemistry. Structure and Bonding. 1975, 21: 89–144 [4 October 2013]. ISBN 978-3-540-07109-9. doi:10.1007/BFb0116498. (原始内容存档于2013-10-04). 
  4. ^ Oganessian, Yu. Ts. Discovering Superheavy Elements. Oak Ridge National Laboratory. 27 January 2017 [21 April 2017]. (原始内容存档于2019-09-21). 
  5. ^ Chemical Data. Flerovium - Fl, Royal Chemical Society
  6. ^ 6.0 6.1 中國化學會第12次會議決議 (PDF). chemistry.org.tw. [2013-05-30]. 
  7. ^ 7.0 7.1 114、116号元素中文定名研讨会在京召开. 全国科学技术名词审定委员会. 2013-07-23 [2014-05-22]. (原始内容存档于2014-11-07). 
  8. ^ [1][永久失效連結]
  9. ^ Jennifer Welsh. Two Elements Named: Livermorium and Flerovium. LiveScience. 2 December 2011 [2011-12-05]. 
  10. ^ 10.0 10.1 Gas Phase Chemistry of Superheavy Elements 互联网档案馆存檔,存档日期2012-02-20., lecture by Heinz W. Gäggeler, Nov. 2007. Last accessed on Dec. 12, 2008.
  11. ^ Wakhle, A.; Simenel, C.; Hinde, D. J.; 等. Simenel, C.; Gomes, P. R. S.; Hinde, D. J.; 等 , 编. Comparing Experimental and Theoretical Quasifission Mass Angle Distributions. European Physical Journal Web of Conferences. 2015, 86: 00061. ISSN 2100-014X. doi:10.1051/epjconf/20158600061可免费查阅. 
  12. ^ Krämer, K. Explainer: superheavy elements. Chemistry World. 2016 [2020-03-15] (英语). 
  13. ^ Discovery of Elements 113 and 115. Lawrence Livermore National Laboratory. [2020-03-15]. (原始内容存档于2015-09-11). 
  14. ^ Eliav, E.; Kaldor, U.; Borschevsky, A. Electronic Structure of the Transactinide Atoms. Scott, R. A. (编). Encyclopedia of Inorganic and Bioinorganic Chemistry. John Wiley & Sons: 1–16. 2018. ISBN 978-1-119-95143-8. doi:10.1002/9781119951438.eibc2632 (英语). 
  15. ^ Oganessian, Yu. Ts.; Dmitriev, S. N.; Yeremin, A. V.; 等. Attempt to produce the isotopes of element 108 in the fusion reaction 136Xe + 136Xe. Physical Review C. 2009, 79 (2): 024608. ISSN 0556-2813. doi:10.1103/PhysRevC.79.024608 (英语). 
  16. ^ Münzenberg, G.; Armbruster, P.; Folger, H.; 等. The identification of element 108 (PDF). Zeitschrift für Physik A. 1984, 317 (2): 235–236 [20 October 2012]. Bibcode:1984ZPhyA.317..235M. doi:10.1007/BF01421260. (原始内容 (PDF)存档于7 June 2015). 
  17. ^ Subramanian, S. Making New Elements Doesn't Pay. Just Ask This Berkeley Scientist. Bloomberg Businessweek. [2020-01-18]. 
  18. ^ 18.0 18.1 18.2 Ivanov, D. Сверхтяжелые шаги в неизвестное [Superheavy steps into the unknown]. nplus1.ru. 2019 [2020-02-02] (俄语). 
  19. ^ Hinde, D. Something new and superheavy at the periodic table. The Conversation. 2017 [2020-01-30] (英语). 
  20. ^ Nuclear Reactions (PDF): 7–8. [2020-01-27].  Published as Loveland, W. D.; Morrissey, D. J.; Seaborg, G. T. Nuclear Reactions. Modern Nuclear Chemistry. John Wiley & Sons, Inc. 2005: 249–297. ISBN 978-0-471-76862-3. doi:10.1002/0471768626.ch10 (英语). 
  21. ^ 21.0 21.1 Krása, A. Neutron Sources for ADS. Faculty of Nuclear Sciences and Physical Engineering (Czech Technical University in Prague). 2010: 4–8. S2CID 28796927. 
  22. ^ Wapstra, A. H. Criteria that must be satisfied for the discovery of a new chemical element to be recognized (PDF). Pure and Applied Chemistry. 1991, 63 (6): 883. ISSN 1365-3075. doi:10.1351/pac199163060879. 
  23. ^ 23.0 23.1 Hyde, E. K.; Hoffman, D. C.; Keller, O. L. A History and Analysis of the Discovery of Elements 104 and 105. Radiochimica Acta. 1987, 42 (2): 67–68. ISSN 2193-3405. doi:10.1524/ract.1987.42.2.57. 
  24. ^ 24.0 24.1 24.2 24.3 Chemistry World. How to Make Superheavy Elements and Finish the Periodic Table [Video]. Scientific American. 2016 [2020-01-27] (英语). 
  25. ^ Hoffman, Ghiorso & Seaborg 2000,第334頁.
  26. ^ Hoffman, Ghiorso & Seaborg 2000,第335頁.
  27. ^ Zagrebaev, Karpov & Greiner 2013,第3頁.
  28. ^ Beiser 2003,第432頁.
  29. ^ Staszczak, A.; Baran, A.; Nazarewicz, W. Spontaneous fission modes and lifetimes of superheavy elements in the nuclear density functional theory. Physical Review C. 2013, 87 (2): 024320–1. ISSN 0556-2813. doi:10.1103/physrevc.87.024320可免费查阅. 
  30. ^ Beiser 2003,第439頁.
  31. ^ Oganessian, Yu. Ts.; Rykaczewski, K. P. A beachhead on the island of stability. Physics Today. 2015, 68 (8): 32–38. ISSN 0031-9228. OSTI 1337838. doi:10.1063/PT.3.2880. 
  32. ^ Grant, A. Weighing the heaviest elements. Physics Today. 2018. doi:10.1063/PT.6.1.20181113a (英语). 
  33. ^ Howes, L. Exploring the superheavy elements at the end of the periodic table. Chemical & Engineering News. 2019 [2020-01-27] (英语). 
  34. ^ Beiser 2003,第433頁.
  35. ^ 35.0 35.1 Robinson, A. E. The Transfermium Wars: Scientific Brawling and Name-Calling during the Cold War. Distillations. 2019 [2020-02-22] (英语). 
  36. ^ Periodic Table. Royal Society of Chemistry. [2020-03-01]. 
  37. ^ 37.0 37.1 Kragh 2018,第38–39頁.
  38. ^ Kragh 2018,第40頁.
  39. ^ 39.0 39.1 Ghiorso, A.; Seaborg, G. T.; Oganessian, Yu. Ts.; 等. Responses on the report 'Discovery of the Transfermium elements' followed by reply to the responses by Transfermium Working Group (PDF). Pure and Applied Chemistry. 1993, 65 (8): 1815–1824 [7 September 2016]. doi:10.1351/pac199365081815. (原始内容存档 (PDF)于25 November 2013). 
  40. ^ Commission on Nomenclature of Inorganic Chemistry. Names and symbols of transfermium elements (IUPAC Recommendations 1997) (PDF). Pure and Applied Chemistry. 1997, 69 (12): 2471–2474. doi:10.1351/pac199769122471. 
  41. ^ 41.0 41.1 Oganessian, Yu. Ts. Synthesis of Superheavy Nuclei in the ^{48}Ca+ ^{244}Pu Reaction. Physical Review Letters. 1999, 83: 3154. Bibcode:1999PhRvL..83.3154O. doi:10.1103/PhysRevLett.83.3154. 
  42. ^ 42.0 42.1 Yeremin, A. V.; Oganessian, Yu. Ts.; Popeko, A. G.; Bogomolov, S. L.; Buklanov, G. V.; Chelnokov, M. L.; Chepigin, V. I.; Gikal, B. N.; Gorshkov, V. A. Synthesis of nuclei of the superheavy element 114 in reactions induced by 48Ca. Nature. 1999, 400 (6741): 242. Bibcode:1999Natur.400..242O. doi:10.1038/22281. 
  43. ^ 43.0 43.1 Oganessian, Yu. Ts.; Utyonkov, V.; Lobanov, Yu.; Abdullin, F.; Polyakov, A.; Shirokovsky, I.; Tsyganov, Yu.; Gulbekian, G.; Bogomolov, S. Synthesis of superheavy nuclei in the 48Ca+244Pu reaction: 288114. Physical Review C. 2000, 62: 041604. Bibcode:2000PhRvC..62d1604O. doi:10.1103/PhysRevC.62.041604. 
  44. ^ 44.0 44.1 44.2 Oganessian, Yu. Ts.; Utyonkov, V.; Lobanov, Yu.; Abdullin, F.; Polyakov, A.; Shirokovsky, I.; Tsyganov, Yu.; Gulbekian, G.; Bogomolov, S. Measurements of cross sections for the fusion-evaporation reactions 244Pu(48Ca,xn)292−x114 and 245Cm(48Ca,xn)293−x116. Physical Review C. 2004, 69: 054607. Bibcode:2004PhRvC..69e4607O. doi:10.1103/PhysRevC.69.054607. 
  45. ^ R.C.Barber; H.W.Gaeggeler;P.J.Karol;H. Nakahara; E.Verdaci; E. Vogt. Discovery of the element with atomic number 112 (PDF). Pure Appl. Chem. 2009, 81: 1331. doi:10.1351/PAC-REP-08-03-05. (原始内容 (IUPAC Technical Report)存档于2009-06-17). 
  46. ^ IUPAC - Discovery of the Elements with Atomic Number 114 and 116. [2011-10-18]. (原始内容存档于2011-06-04). 
  47. ^ Element 114 is Named Flerovium and Element 116 is Named Livermorium. IUPAC. 2012-05-31 [2012-05-31]. (原始内容存档于2016-02-05) (英语). 
  48. ^ J. Chatt. Recommendations for the Naming of Elements of Atomic Numbers Greater than 100. Pure Appl. Chem. 1979, 51: 381–384. doi:10.1351/pac197951020381. 
  49. ^ 全国科学技术名词审定委员会公布114号、116号元素的中文名称. 《材料保护》. 2013-12, 46 (12): 66–66. 
  50. ^ Element 114 - Heaviest Element at GSI Observed at TASCA[失效連結]
  51. ^ Oganessian, Yu. Ts.; Utyonkov, V.; Lobanov, Yu.; Abdullin, F.; Polyakov, A.; Shirokovsky, I.; Tsyganov, Yu.; Gulbekian, G.; Bogomolov, S. Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions 233,238U, 242Pu, and 248Cm+48Ca. Physical Review C. 2004, 70: 064609. Bibcode:2004PhRvC..70f4609O. doi:10.1103/PhysRevC.70.064609. 
  52. ^ 52.0 52.1 52.2 "Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions 233,238U , 242Pu , and 248Cm+48Ca" 互联网档案馆存檔,存档日期2008-05-28., Oganessian et al., JINR preprints, 2004. Retrieved on 2008-03-03
  53. ^ Stavsetra, L.; Gregorich, KE; Dvorak, J; Ellison, PA; Dragojević, I; Garcia, MA; Nitsche, H. Independent Verification of Element 114 Production in the 48Ca+242Pu Reaction. Physical Review Letters. 2009, 103 (13): 132502. Bibcode:2009PhRvL.103m2502S. PMID 19905506. doi:10.1103/PhysRevLett.103.132502. 
  54. ^
  55. ^ 55.0 55.1
  56. ^ see Flerov lab annual reports 2000-2006页面存档备份,存于互联网档案馆
  57. ^ 57.0 57.1 Feng, Zhao-Qing; Jin, Gen-Ming; Li, Jun-Qing; Scheid, Werner. Formation of superheavy nuclei in cold fusion reactions. Physical Review C. 2007, 76: 044606. Bibcode:2007PhRvC..76d4606F. arXiv:0707.2588可免费查阅. doi:10.1103/PhysRevC.76.044606. 
  58. ^ Feng, Z; Jin, G; Li, J; Scheid, W. Production of heavy and superheavy nuclei in massive fusion reactions. Nuclear Physics A. 2009, 816: 33. Bibcode:2009NuPhA.816...33F. arXiv:0803.1117可免费查阅. doi:10.1016/j.nuclphysa.2008.11.003. 
  59. ^ 59.0 59.1 Zagrebaev, V. Fusion-fission dynamics of super-heavy element formation and decay (PDF). Nuclear Physics A. 2004, 734: 164. Bibcode:2004NuPhA.734..164Z. doi:10.1016/j.nuclphysa.2004.01.025. 
  60. ^ P. Roy Chowdhury, C. Samanta, and D. N. Basu. α decay half-lives of new superheavy elements. Phys. Rev. C. January 26, 2006, 73: 014612. Bibcode:2006PhRvC..73a4612C. arXiv:nucl-th/0507054可免费查阅. doi:10.1103/PhysRevC.73.014612. 
  61. ^ C. Samanta, P. Roy Chowdhury and D.N. Basu. Predictions of alpha decay half lives of heavy and superheavy elements. Nucl. Phys. A. 2007, 789: 142–154. Bibcode:2007NuPhA.789..142S. arXiv:nucl-th/0703086可免费查阅. doi:10.1016/j.nuclphysa.2007.04.001. 
  62. ^ P. Roy Chowdhury, C. Samanta, and D. N. Basu. Search for long lived heaviest nuclei beyond the valley of stability. Phys. Rev. C. 2008, 77: 044603. Bibcode:2008PhRvC..77d4603C. doi:10.1103/PhysRevC.77.044603. 
  63. ^ P. Roy Chowdhury, C. Samanta, and D. N. Basu. Nuclear half-lives for α-radioactivity of elements with 100 ≤ Z ≤ 130. At. Data & Nucl. Data Tables. 2008, 94: 781–806. Bibcode:2008ADNDT..94..781C. doi:10.1016/j.adt.2008.01.003. 
  64. ^ Flerov Lab (PDF). [2014-05-22]. (原始内容 (PDF)存档于2011-10-06) (俄语). 

外部連結[编辑]