维基百科,自由的百科全书
跳到导航 跳到搜索

钼   42Mo
氢(其他非金属)
氦(惰性气体)
锂(碱金属)
铍(碱土金属)
硼(类金属)
碳(其他非金属)
氮(其他非金属)
氧(其他非金属)
氟(卤素)
氖(惰性气体)
钠(碱金属)
镁(碱土金属)
铝(贫金属)
硅(类金属)
磷(其他非金属)
硫(其他非金属)
氯(卤素)
氩(惰性气体)
钾(碱金属)
钙(碱土金属)
钪(过渡金属)
钛(过渡金属)
钒(过渡金属)
铬(过渡金属)
锰(过渡金属)
铁(过渡金属)
钴(过渡金属)
镍(过渡金属)
铜(过渡金属)
锌(过渡金属)
镓(贫金属)
锗(类金属)
砷(类金属)
硒(其他非金属)
溴(卤素)
氪(惰性气体)
铷(碱金属)
锶(碱土金属)
钇(过渡金属)
锆(过渡金属)
铌(过渡金属)
钼(过渡金属)
锝(过渡金属)
钌(过渡金属)
铑(过渡金属)
钯(过渡金属)
银(过渡金属)
镉(过渡金属)
铟(贫金属)
锡(贫金属)
锑(类金属)
碲(类金属)
碘(卤素)
氙(惰性气体)
铯(碱金属)
钡(碱土金属)
镧(镧系元素)
铈(镧系元素)
镨(镧系元素)
钕(镧系元素)
钷(镧系元素)
钐(镧系元素)
铕(镧系元素)
钆(镧系元素)
铽(镧系元素)
镝(镧系元素)
鈥(镧系元素)
铒(镧系元素)
铥(镧系元素)
镱(镧系元素)
镥(镧系元素)
铪(过渡金属)
钽(过渡金属)
钨(过渡金属)
铼(过渡金属)
锇(过渡金属)
铱(过渡金属)
铂(过渡金属)
金(过渡金属)
汞(过渡金属)
铊(贫金属)
铅(贫金属)
铋(贫金属)
钋(贫金属)
砹(类金属)
氡(惰性气体)
钫(碱金属)
镭(碱土金属)
锕(锕系元素)
钍(锕系元素)
镤(锕系元素)
鈾(锕系元素)
镎(锕系元素)
钚(锕系元素)
镅(锕系元素)
锔(锕系元素)
锫(锕系元素)
锎(锕系元素)
锿(锕系元素)
镄(锕系元素)
钔(锕系元素)
铹(锕系元素)
锘(锕系元素)
鑪(过渡金属)
𨧀(过渡金属)
𨭎(过渡金属)
𨨏(过渡金属)
𨭆(过渡金属)
䥑(未知特性)
鐽(未知特性)
錀(未知特性)
鎶(过渡金属)
鉨(未知特性)
鈇(贫金属)
镆(未知特性)
鉝(未知特性)
Ts(未知特性)
Og(未知特性)




外觀
金屬:灰色
概況
名稱·符號·序數 钼(Molybdenum)·Mo·42
元素類別 過渡金屬
·週期· 6·5·d
標準原子質量 95.95
電子排布

[] 5s1 4d5
2, 8, 18, 13, 1

钼的电子層(2, 8, 18, 13, 1)
物理性質
物態 固體
密度 (接近室温
10.28 g·cm−3
熔點時液體密度 9.33 g·cm−3
熔點 2896 K,2623 °C,4753 °F
沸點 4912 K,4639 °C,8382 °F
熔化熱 37.48 kJ·mol−1
汽化熱 598 kJ·mol−1
比熱容 24.06 J·mol−1·K−1

蒸汽壓

壓/Pa 1 10 100 1 k 10 k 100 k
溫/K 2742 2994 3312 3707 4212 4879
原子性質
氧化態 6, 5, 4, 3, 2, 1[1], -1, -2
(強酸性)[來源請求]
電負性 2.16(鲍林标度)
電離能

第一:684.3 kJ·mol−1
第二:1560 kJ·mol−1

第三:2618 kJ·mol−1
原子半徑 139 pm
共價半徑 154±5 pm
雜項
晶體結構 體心立方
磁序 順磁性[2]
電阻率 (20 °C)53.4n Ω·m
熱導率 138 W·m−1·K−1
膨脹係數 (25 °C)4.8 µm·m−1·K−1
楊氏模量 329 GPa
剪切模量 126 GPa
體積模量 230 GPa
泊松比 0.31
莫氏硬度 5.5
維氏硬度 1530 MPa
布氏硬度 1500 MPa
CAS號7439-98-7
最穩定同位素

主条目:钼的同位素

同位素 丰度 半衰期 (t1/2) 衰變
方式 能量MeV 產物
92Mo 14.84% >1.9×1020 y β+β+ 1.6491 92Zr
93Mo syn 4×103 y ε - 93Nb
94Mo 9.25% 穩定,帶52個中子
95Mo 15.92% 穩定,帶53個中子
96Mo 16.68% 穩定,帶54個中子
97Mo 9.55% 穩定,帶55個中子
98Mo 24.13% >1×1014 y ββ 0.1125 98Ruenruthenium-98
99Mo syn 65.94 h β 0.436, 1.214 99mTc
γ 0.74, 0.36,
0.14
-
100Mo 9.63% 7.8×1018 y ββ 3.04 100Ru

钼(Molybdenum)是一种化学元素,它的化学符号是Mo,它的原子序数是42,是一种灰色的过渡金属。Molybdenum 来自新拉丁语 molybdaenum,后者来自古希臘語 Μόλυβδος molybdos,意思是铅,因为钼矿石与铅矿石被混淆了。[3]钼矿石在历史上被人们所熟知,但该元素的发现(即从其它金属中区分出来)是在1778年,由 卡尔·威廉·舍勒识别出来。该金属在1781年第一次被彼得·雅各·耶尔姆分离得出。

钼在地球上没有自然金属的形态,但是在矿物中以各种氧化物的形式出现。在单体元素形式中,钼是一种灰色金属,呈灰口铸铁颜色,是所有元素中熔点排名第六高。它很容易在合金中形成坚硬、稳定的碳化物,因此,世界上大多数钼产品(约80%)都被用作某种铁合金,包括高强度合金和高温合金。

大多数钼化合物在水中微溶,但是当含钼的矿物与氧气和水接触时可以形成钼离子MoO2−
4
。在工业上,钼化合物(世界上约有14%的产品)被用于高压和高温应用品,如色素或催化剂等。

目前,一些细菌在打破大气氮分子的化学键上最常用的催化剂是含钼酶,能起到生物固氮作用。在细菌和动物中,虽然只有细菌和蓝藻酶会参与到固氮活动中,但已知的含钼酶至少有50种。这些固氮酶含钼的形式与其它含钼酶不同,但都有氧化形式的钼,用以搭配钼辅因子。由于钼的各种辅因子酶的多样功能,钼成为所有高于真核生物组织的膳食矿物质,虽然并非所有细菌都用到钼。

鉬的發現史[编辑]

alt1
alt2
鉬金屬在空氣中灼燒會放出金黃色光芒 (左) 不同氧化態的鉬離子有不同顏色 (右)

在18世紀,輝鉬礦往往被認為是鉛礦。1778年瑞典卡尔·威廉·舍勒從輝鉬礦中提取出了氧化鉬,根據舍勒的啟發,1781年他的朋友,同是瑞典人的彼得·雅各布·海基尔姆英语Peter Jacob Hjelm把鉬土用「還原法」分離出新的金屬鉬。

性质[编辑]

物理性质[编辑]

在純物質的狀態下,鉬是銀灰色的金屬,莫氏硬度為5.5。它的熔點為2,623 °C,沸點為4639°C(4,753 °F),在天然存在的元素中,只有鉭,鋨,錸,鎢和碳有有高於鉬的熔點。[4]鉬的弱氧化起始於300 °C (572 °F)。在商用金屬中,鉬是熱膨脹係數最低的一種。[5]當鉬絲的直徑從約50-100 nm減小到10 nm時,鉬絲的拉伸強度增加三倍(10 GPa~30 GPa)。[6]

同位素[编辑]

目前有35種已知的鉬同位素,原子量介於83到117之間,其中有四種亞穩態同核異構物(nuclear isomers),天然存在的同位素有七種,其原子量為92, 94, 95, 96, 97, 98, and 100。在天然存在中的七種同位素,只有鉬-100是不穩定的。[7]

鉬-98是含量最高的同位素,佔鉬總比例的24.14% 。鉬-100擁有1019年的半衰期,並會經過雙重β衰變後變成釕-100 ,質量數介於111和117之間的鉬同位素都擁有約150ns的半衰期。[7][8]所有鉬的不穩定同位素會衰變成鈮,鎝和釕的同位素。[8]

最常見的同位素應用為鉬-99,鉬-99為衰變後的產物,它是短壽命伽瑪放射性同位素鎝-99m的母體同位素,應用於醫學成像。[9]於2008年the Delft University of Technology申請了專利,內容為以鉬-98為基礎生產鉬-99。[10]

化合物以及化學性質[编辑]

鉬是一種過渡金屬,其電負度為2.16,標準原子量為95.95 g/mol。[11][12]

在室溫下,鉬不會與氧氣或水發生明顯反應,在600 °C以上會氧化,並生成三氧化鉬

2 Mo + 3 O2 → 2 MoO3

高溫下,三氧化鉬具有揮發性並會昇華。這可以避免形成連續性的保護性氧化層(氧化層可以保護金屬,避免進一步氧化到內部)。[13]

鉬有多個氧化態,最穩定存在的為+4和+6。鉬化合物的化學性質比較相似於鎢而非鉻。例如:鉬三價與鎢三價化合物具有相似的不穩定性,而鉻三價化合物則穩定性較好。

鉬化合物的最高氧化態為六價,化合物為三氧化鉬。常見的硫化物為二硫化鉬。[14]

三氧化鉬可溶於強鹼性的水溶液中,並形成鉬酸鹽類,鉬酸鹽的氧化性比鉻酸鹽較弱,但兩者會在低pH值環境下,縮合成氧錯離子(complex oxyanions),像是[Mo7O24]6− and [Mo8O26]4−,多鉬酸鹽可以加入其他金屬離子,形成多金屬氧酸鹽(polyoxometalates)。[15]

P[Mo12O40]3−為深藍色化合物,用於磷的光譜檢測中。[16]鉬的各種氧化價數,可從各種鉬的氯化物中見得。[14]

氧化物
形态
例子[17]
−2 Na2[Mo2(CO)10]
0 Mo(CO)6
+1 Na[C6H6Mo]
+2 MoCl2
+3 Na3[Mo(CN)]6
+4 MoS2
+5 MoCl5
+6 MoF6
钼磷酸盐阴离子的Keggin结构(P[Mo12O40]3−)是一种多酸

鉬礦與生產[编辑]

發展歷史[编辑]

應用[编辑]

合金[编辑]

物質狀態的其他應用[编辑]

化合物應用[编辑]

生物學層面[编辑]

固氮催化[编辑]

鉬作為輔酶[编辑]

人體新陳代謝與缺乏[编辑]

疾病[编辑]

銅-鉬拮抗作用[编辑]

飲食建議與食物來源[编辑]

注意事項[编辑]


注釋[编辑]

  1. ^ Molybdenum: molybdenum(I) fluoride compound data. OpenMOPAC.net. [2007-12-10]. (原始内容存档于2011-07-21). 
  2. ^ Magnetic susceptibility of the elements and inorganic compounds 互联网档案馆存檔,存档日期2011-03-03., in Handbook of Chemistry and Physics 81st edition, CRC press.
  3. ^ Lide, David R. (编). Molybdenum. CRC Handbook of Chemistry and Physics 4. Chemical Rubber Publishing Company. 1994: 18. ISBN 0-8493-0474-1. 
  4. ^ R., Lide, David. CRC handbook of chemistry and physics. 74th ed. Boca Raton: CRC Press https://www.worldcat.org/oclc/31375983. 1993. ISBN 0849304741. OCLC 31375983.  缺少或|title=为空 (帮助)
  5. ^ John., Emsley,. Nature's building blocks : an A-Z guide to the elements. Oxford: Oxford University Press https://www.worldcat.org/oclc/46984609. 2001. ISBN 0198503415. OCLC 46984609.  缺少或|title=为空 (帮助)
  6. ^ Shpak, Anatoly P.; Kotrechko, Sergiy O.; Mazilova, Tatjana I.; Mikhailovskij, Igor M. Inherent tensile strength of molybdenum nanocrystals. Science and Technology of Advanced Materials. August 2009, 10 (4): 045004. ISSN 1468-6996. PMC PMC5090266 请检查|pmc=值 (帮助). PMID 27877304. doi:10.1088/1468-6996/10/4/045004. 
  7. ^ 7.0 7.1 Audi, G.; Bersillon, O.; Blachot, J.; Wapstra, A.H. The Nubase evaluation of nuclear and decay properties. Nuclear Physics A: 3–128. doi:10.1016/j.nuclphysa.2003.11.001. 
  8. ^ 8.0 8.1 Audi, Georges; Bersillon, O.; Blachot, J.; Wapstra, A. H. The NUBASE Evaluation of Nuclear and Decay Properties. Nuclear Physics A (Atomic Mass Data Center). 2003, 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001. 
  9. ^ Armstrong, John T. (2003). "Technetium". Chemical & Engineering News. Retrieved 2009-07-07
  10. ^ Wolterbeek, Hubert Theodoor; Bode, Peter "A process for the production of no-carrier added 99Mo". European Patent EP2301041 (A1) ― 2011-03-30. Retrieved on 2012-06-27.
  11. ^ Wieser, M. E.; Berglund, M. Atomic weights of the elements 2007 (IUPAC Technical Report) (PDF). Pure and Applied Chemistry. 2009, 81 (11): 2131–2156. doi:10.1351/PAC-REP-09-08-03. 
  12. ^ Meija, J.; 等. Current Table of Standard Atomic Weights in Alphabetical Order: Standard Atomic weights of the elements. Commission on Isotopic Abundances and Atomic Weights. 2013. (原始内容存档于2014-04-29).  无效|dead-url=bot: unknown (帮助)
  13. ^ Davis, Joseph R. Heat-resistant materials. Molybdenum (ASM International). 1997: 365. ISBN 0-87170-596-6. 
  14. ^ 14.0 14.1 Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils. Lehrbuch der Anorganischen Chemie 91–100. Walter de Gruyter. 1985: 1096–1104. ISBN 3-11-007511-3. 
  15. ^ Pope, Michael T.; Müller, Achim. Polyoxometalate Chemistry: An Old Field with New Dimensions in Several Disciplines. Angewandte Chemie International Edition. 1997, 30: 34–48. doi:10.1002/anie.199100341. 
  16. ^ Nollet, Leo M. L. (编). Handbook of water analysis. New York, NY: Marcel Dekker. 2000: 280–288. ISBN 978-0-8247-8433-1. 
  17. ^ Schmidt, Max. VI. Nebengruppe. Anorganische Chemie II.. Wissenschaftsverlag. 1968: 119–127 (德语).