進位制
進位制[1](carry system)又稱進制[2][3]、進位系統[4],是一種記數制度、系統或方法;利用這種「記數法」,可以使用有限種的「數字符號」來表示所有的數值。進位(carry)則是傳送進位數之動作或過程[5]。
進位制,「進」表示在一個位值的數字達到基數後,將其重置為零並使高一位(位值)的數字加一。「位」代表位值(place value)。
進位制的其他名稱:位置記法[6](positional notation)、數字命位法[7]、定位記法、進位記數法、位值記數法(place-value notation)、位置數值系統(positional numeral system)。
一種進位制中可以使用的數字符號的數目,稱為這種進位制的基數或底數。若一個進位制的基數為 ,即可稱之為 進位制,簡稱 進制。現在最常用的進位制是十進制,這種進位制通常使用10個阿拉伯數字(即 0-9 )進行記數。[8]
我們可以用不同的進位制來表示同一個數。比如:十進數57(10),可以用二進制表示為111001(2),也可以用五進制表示為212(5),同時也可以用八進制表示為71(8),可用十二進制表示為49(12),亦可用十六進制表示為39(16),它們所代表的數值都是一樣的。
在10進制中有10個數字(0 - 9),比如:
- .
在16進制中有16個數字(0–9 和 A–F),比如:
- (16進制中A代表10,B代表11,C代表12,D代表13,E代表14,F代表15)
一般說來,進制有個數字,如果是其中四個數字,那麼就有
- (注意, 表示一個數字序列, 而不是數字的相乘)
常見進位制及其用途
[編輯]底/基數 | 名稱 | 描述 |
---|---|---|
10 | 十進制 | 世界上最常見的算術運算位進制系統,它是2和5的乘積,用於大多數機械計數器。其十位數字為 「0-9」。 |
12 | 十二進制 | 因為有多個因數如2,3,4和6的易於整除性,它傳統上用以表示數量和總數,如一打即為十二個單位。十二位數字為「0-9」,接著是「A」和「B」。 |
20 | 二十進制 | 因為有多個因數如2,4,5和10的易於整除性,在幾種傳統文化中的數字系統,仍然被用於計數。二十位數字為「0-9」,接著是「A-J」。 |
2 | 二進制 | 幾乎所有的電子計算機內部都使用二進位制,分別為「0」和「1」表示「關」和「開」。用於大多數電子計數器。 |
16 | 十六進制 | 經常用於計算機領域,2到4次冪。十六位數字為「0-9」,接著是「A-F」。 |
8 | 八進制 | 偶爾用於計算機領域,2到3次冪。八位數字為「0-7」。 |
60 | 六十進制 | 起源於古代蘇美爾並傳給巴比倫人。六十成為3,4和5的乘積。今天用作現代圓形坐標系(度,分,秒)和時間測量(小時,分鐘和秒)的基礎。 |
八進位制和十六進位制系統通常用於計算機領域,因為它們可方便當作二進位制的簡寫。十六進位制數字對應於四位二進位制數字的序列,因為十六是二的四次方; 例如,十六進位制 7816 是二進制 11110002。八進位制數和二進位制的數字序列之間也有類似關係,因為八是二的立方。底數通常是自然數。 然而,其它位進制系統也是可能的。黃金比率底數(其底為非整數代 數)和負底數(其底為負數)。
參考文獻
[編輯]- ^ 十進位制. 樂詞網. 國家教育研究院. (繁體中文)
- ^ 二進制. 樂詞網. 國家教育研究院. (繁體中文)
- ^ 二进制. 術語在線. 全國科學技術名詞審定委員會. (簡體中文)
- ^ 進位系統. 樂詞網. 國家教育研究院. (繁體中文)
- ^ 進位. 樂詞網. 國家教育研究院. (繁體中文)
- ^ 位置记法位. 樂詞網. 國家教育研究院. (繁體中文)
- ^ 數字命位法. 樂詞網. 國家教育研究院. (繁體中文)
- ^ 張彥;梁清華. 浅谈进位制. 《中學數學雜誌》2008年第12期. [2012-12-29]. (原始內容存檔於2014-07-14).
- O'Connor, John; Robertson, Edmund. Babylonian Numerals. December 2000 [21 August 2010]. (原始內容存檔於2014-09-11).
- Kadvany, John. Positional Value and Linguistic Recursion. Journal of Indian Philosophy. December 2007.
- Knuth, Donald. The art of Computer Programming 2. Addison-Wesley. 1997: 195–213. ISBN 0-201-89684-2.
- Ifrah, George. The Universal History of Numbers: From Prehistory to the Invention of the Computer. Wiley. 2000. ISBN 0-471-37568-3.
- Kroeber, Alfred. Handbook of the Indians of California. Courier Dover Publications. 1976: 176 [1925] [2014-07-17]. ISBN 9780486233680. (原始內容存檔於2016-05-05).
參見
[編輯]外部連結
[編輯]- 進位轉換器(網頁版) (頁面存檔備份,存於網際網路檔案館)
- Accurate Base Conversion
- The Development of Hindu Arabic and Traditional Chinese Arithmetics
- Implementation of Base Conversion (頁面存檔備份,存於網際網路檔案館) at cut-the-knot
- Learn to count other bases on your fingers (頁面存檔備份,存於網際網路檔案館)
- From one to another number system (頁面存檔備份,存於網際網路檔案館)