神经可塑性

维基百科,自由的百科全书
跳转至: 导航搜索

神经可塑性(英語:Neuro-plasticity)是指的由于经验原因引起的大脑的结构改变。神经可塑性是近期的发现,过去的科学家往往认为在婴儿关键期后,大脑结构往往不发生变化。 大脑有神经元细胞和神经胶质细胞构成,这些细胞互相连接,通过加强或削弱这些连接,大脑的结构可以发生改变。

參見[编辑]

參考資料[编辑]

  1. ^ 1.0 1.1 Livingston R.B. Brain mechanisms in conditioning and learning. Neurosciences Research Program Bulletin. 1966, 4 (3): 349–354. 
  2. ^ 2.0 2.1 Bennett EL, Diamond MC, Krech D, Rosenzweig MR. Chemical and Anatomical Plasticity of the Brain. Science. 1964, 146: 610–619. PMID 14191699. doi:10.1126/science.146.3644.610. 
  3. ^ 3.0 3.1 Rakic, P. Neurogenesis in adult primate neocortex: an evaluation of the evidence. Nature Reviews Neuroscience. January 2002, 3 (1): 65–71. PMID 11823806. doi:10.1038/nrn700. 
  4. ^ Pascual-Leone A.; Amedi A.; Fregni F.; Merabet L. B. The plastic human brain cortex. Annual Review of Neuroscience. 2005, 28: 377–401. doi:10.1146/annurev.neuro.27.070203.144216. 
  5. ^ 5.0 5.1 Pascual-Leone A.; Freitas C.; Oberman L.; Horvath J. C.; Halko M.; Eldaief M.; 等. Characterizing brain cortical plasticity and network dynamics across the age-span in health and disease with TMS-EEG and TMS-fMRI. Brain Topography. 2011, 24: 302–315. doi:10.1007/s10548-011-0196-8. 
  6. ^ Ganguly K, Poo MM. Activity-dependent neural plasticity from bench to bedside. Neuron. October 2013, 80 (3): 729–741. PMID 24183023. doi:10.1016/j.neuron.2013.10.028. 
  7. ^ Keller TA, Just MA. Structural and functional neuroplasticity in human learning of spatial routes. NeuroImage. January 2016, 125: 256–266. PMID 26477660. doi:10.1016/j.neuroimage.2015.10.015. Recent findings with both animals and humans suggest that decreases in microscopic movements of water in the hippocampus reflect short-term neuroplasticity resulting from learning. Here we examine whether such neuroplastic structural changes concurrently alter the functional connectivity between hippocampus and other regions involved in learning. ... These concurrent changes characterize the multidimensionality of neuroplasticity as it enables human spatial learning. 
  8. ^ 8.0 8.1 Doidge, Norman. The Brain that Changes Itself. Penguin Books. 2007: 22. 
  9. ^ Buonomano, Dean V.; Merzenich, Michael M. CORTICAL PLASTICITY: From Synapses to Maps. Annual Review of Neuroscience. March 1998, 21: 149–186. PMID 9530495. doi:10.1146/annurev.neuro.21.1.149. 
  10. ^ Merzenich, M.M.; Nelson, R.J.; Stryker, M.P.; Cynader, M.S.; Schoppmann, A.; Zook, J.M. Somatosensory Cortical Map Changes Following Digit Amputation in Adult Monkeys. Journal of Comparative Neurology. 1984, 224 (4): 591–605. PMID 6725633. doi:10.1002/cne.902240408. 
  11. ^ Wall, J.T.; Xu, J.; Wang, X. Human brain plasticity: an emerging view of the multiple substrates and mechanisms that cause cortical changes and related sensory dysfunctions after injuries of sensory inputs from the body. Brain Research Reviews (Elsevier Science B.V.). September 2002, 39 (2–3): 181–215. PMID 12423766. doi:10.1016/S0165-0173(02)00192-3. 
  12. ^ 12.0 12.1 12.2 12.3 12.4 12.5 Doidge, Norman. The Brain That Changes Itself: Stories of Personal Triumph from the frontiers of brain science英语The Brain That Changes Itself. New York: Viking. 2007. ISBN 978-0-670-03830-5. 
  13. ^ Interview with Merzenich, 2004
  14. ^ Draganski et al. "Temporal and Spatial Dynamics of Brain Structure Changes during Extensive Learning" The Journal of Neuroscience, 7 June 2006, 26(23):6314–6317
  15. ^ 15.0 15.1 Ponti, Giovanna; Peretto, Paolo; Bonfanti, Luca; Reh, Thomas A. Reh, Thomas A., 编. Genesis of Neuronal and Glial Progenitors in the Cerebellar Cortex of Peripuberal and Adult Rabbits. PLoS ONE. 2008, 3 (6): e2366. PMC 2396292. PMID 18523645. doi:10.1371/journal.pone.0002366. 
  16. ^ Young J. A., Tolentino M.; Tolentino. Neuroplasticity and its Applications for Rehabilitation. American Journal of Therapeutics. 2011, 18 (1): 70–80. PMID 21192249. doi:10.1097/MJT.0b013e3181e0f1a4. 
  17. ^ Traumatic Brain Injury (a story of TBI and the results of ProTECT using progesterone treatments) Emory University News Archives
  18. ^ Cutler, Sarah M.; Hoffman, Stuart W.; Pettus, Edward H.; Stein, Donald G. Tapered progesterone withdrawal enhances behavioral and molecular recovery after traumatic brain injury. Experimental Neurology (Elsevier). October 2005, 195 (2): 423–429. PMID 16039652. doi:10.1016/j.expneurol.2005.06.003. 
  19. ^ 19.0 19.1 Stein, Donald. "Plasticity." Personal interview. Alyssa Walz. 19 November 2008.
  20. ^ Progesterone offers no significant benefit in traumatic brain injury clinical trial, Emory University, Atlanta, GA
  21. ^ Dominick M. Maino: Neuroplasticity: Teaching an Old Brain New Tricks, Review of Optometry, January 2009
  22. ^ Indu Vedamurthy; Samuel J. Huang; Dennis M. Levi; Daphne Bavelier; David C. Knill. Recovery of stereopsis in adults through training in a virtual reality task. Journal of Vision 12 (14). 27 December 2012. doi:10.1167/12.14.53.  Article 53
  23. ^ Robert F. Hess; Benjamin Thompson. New insights into amblyopia: binocular therapy and noninvasive brain stimulation. Journal of AAPOS 17 (1). February 2013: 89–93. doi:10.1016/j.jaapos.2012.10.018. 
  24. ^ 24.0 24.1 Strong GK, Torgerson CJ, Torgerson D, Hulme C. A systematic meta-analytic review of evidence for the effectiveness of the 'Fast ForWord' language intervention program. J Child Psychol Psychiatry. Mar 2011, 52 (3): 224–35. PMC 3061204. PMID 20950285. doi:10.1111/j.1469-7610.2010.02329.x. 
  25. ^ Simons DJ, Boot WR, Charness N, Gathercole SE, Chabris CF, Hambrick DZ, Stine-Morrow EA. Do "Brain-Training" Programs Work? (PDF). Psychological Science in the Public Interest. 2016, 17 (3): 103–186. PMID 27697851. doi:10.1177/1529100616661983. 
  26. ^ Kral A, Sharma A; Sharma. Developmental Neuroplasticity after Cochlear Implantation. Trends Neurosci. 2012, 35 (2): 111–122. PMC 3561718. PMID 22104561. doi:10.1016/j.tins.2011.09.004. 
  27. ^ Kral A, O'Donoghue GM. Profound Deafness in Childhood. New England J Medicine. 2010, 363: 1438–50. PMID 20925546. doi:10.1056/nejmra0911225. 
  28. ^ Beaumont, Geneviève; Mercier, Pierre-Emmanuel; Malouin, Jackson. Decreasing phantom limb pain through observation of action and imagery: A case series. Pain Medicine. 2011, 12 (2): 289–299. PMID 21276185. doi:10.1111/j.1526-4637.2010.01048.x. 
  29. ^ Flor H, Elbert T, Knecht S, Wienbruch C, Pantev C, Birbaumer N; Elbert; Knecht; Wienbruch; Pantev; Birbaumer; Larbig; Taub; 等. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature. 1995, 375 (6531): 482–484. PMID 7777055. doi:10.1038/375482a0. 
  30. ^ Flor H, Cortical Reorganization And Chronic Pain: Implications For Rehabilitation, J Rehabil Med, 2003, Suppl.41:66–72
  31. ^ Moseley, Brugger, Interdependence of movement and anatomy persists when amputees learn a physiologically impossible movement of their phantom limb, PNAS, 16 September 2009,[1]
  32. ^ Seifert F.; Maihöfner C. Functional and structural imaging of pain-induced neuroplasticity. Current Opinion in Anaesthesiology. 2011, 24: 515–523. doi:10.1097/aco.0b013e32834a1079. 
  33. ^ Maihöfner C.; Handwerker H.O.; Neundorfer B.; Birklein F. Patterns of cortical reorganization in complex regional pain syndrome. Neurology. 2003, 61: 1707–1715. doi:10.1212/01.wnl.0000098939.02752.8e. 
  34. ^ Apkarian A.V., Sosa Y., Sonty S; Sosa; Sonty; Levy; Harden; Parrish; Gitelman; 等. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci. 2004, 24 (46): 10410–10415. PMID 15548656. doi:10.1523/JNEUROSCI.2541-04.2004. 
  35. ^ Karl A., Birbaumer N., Lutzenberger W.; Birbaumer; Lutzenberger; Cohen; Flor; 等. Reorganization of motor and somatosensory cortex in upper extremity amputees with phantom limb pain. J Neurosci. 2001, 21 (10): 3609–18. PMID 11331390. 
  36. ^ Flor H.; Braun C.; Elbert T.; 等. Extensive reorganization of primary somatosensory cortex in chronic back pain patients. Neurosci Lett. 1997, 224: 5–8. doi:10.1016/s0304-3940(97)13441-3. 
  37. ^ Napadow V., Kettner N., Ryan A.; Kettner; Ryan; Kwong; Audette; Hui; 等. Somatosensory cortical plasticity in carpal tunnel syndrome: a cross-sectional fMRI evaluation. NeuroImage. 2006, 31 (2): 520–530. PMID 16460960. doi:10.1016/j.neuroimage.2005.12.017. 
  38. ^ Pagnoni, Giuseppe; Cekic, Milos. Age effects on gray matter volume and attentional performance in Zen meditation.. Neurobiology of Aging. 28 July 2007, 28 (10): 1623–1627. PMID 17655980. doi:10.1016/j.neurobiolaging.2007.06.008. 
  39. ^ Vestergaard-Poulsen, Peter; van Beek, Martijn; Skewes, Joshua; Bjarkam, Carsten R; Stubberup, Michael; Bertelsen, Jes; Roepstorff, Andreas. Long-term meditation is associated with increased gray matter density in the brain stem.. NeuroReport. 28 January 2009, 20 (2): 170–174. PMID 19104459. doi:10.1097/WNR.0b013e328320012a. 
  40. ^ Luders, Eileen; Toga, Arthur W.; Lepore, Natasha; Gaser, Christian. The underlying anatomical correlates of long-term meditation: larger hippocampal and frontal volumes of gray matter.. NeuroImage. 14 January 2009, 45 (3): 672–678. doi:10.1016/j.neuroimage.2008.12.061. 
  41. ^ Lazar, S.; Kerr, C.; Wasserman, R.; Gray, J.; Greve, D.; Treadway, Michael T.; McGarvey, Metta; Quinn, Brian T.; 等. Meditation experience is associated with increased cortical thickness. NeuroReport. 28 November 2005, 16 (17): 1893–97. PMC 1361002. PMID 16272874. doi:10.1097/01.wnr.0000186598.66243.19. 
  42. ^ Lutz, A.; Greischar, L.L.; Rawlings, N.B.; Ricard, M.; Davidson, R. J. Long-term meditators self-induce high-amplitude gamma synchrony during mental practice. PNAS. 16 November 2004, 101 (46): 16369–73 [8 July 2007]. PMC 526201. PMID 15534199. doi:10.1073/pnas.0407401101. 
  43. ^ Sharon Begley. How Thinking Can Change the Brain. http://www.dalailama.com. 20 January 2007.  外部链接存在于|publisher= (帮助)
  44. ^ Davidson, Richard; Lutz, Antoine. Buddha's Brain: Neuroplasticity and Meditation (PDF). IEEE Signal Processing Magazine. January 2008. Archived from the original on 12 January 2012. 
  45. ^ Chris Frith. Stop meditating, start interacting. New Scientist. 17 February 2007. 
  46. ^ Tarumi T, Zhang R. Cerebral hemodynamics of the aging brain: risk of Alzheimer disease and benefit of aerobic exercise. Front Physiol. January 2014, 5: 6. PMC 3896879. PMID 24478719. doi:10.3389/fphys.2014.00006. Exercise-related improvements in brain function and structure may be conferred by the concurrent adaptations in vascular function and structure. Aerobic exercise increases the peripheral levels of growth factors (e.g., BDNF, IFG-1, and VEGF) that cross the blood-brain barrier (BBB) and stimulate neurogenesis and angiogenesis (Trejo et al., 2001; Lee et al., 2002; Fabel et al., 2003; Lopez-Lopez et al., 2004). 
  47. ^ Szuhany KL, Bugatti M, Otto MW. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J Psychiatr Res. October 2014, 60C: 56–64. PMC 4314337. PMID 25455510. doi:10.1016/j.jpsychires.2014.10.003. Consistent evidence indicates that exercise improves cognition and mood, with preliminary evidence suggesting that brain-derived neurotrophic factor (BDNF) may mediate these effects. The aim of the current meta-analysis was to provide an estimate of the strength of the association between exercise and increased BDNF levels in humans across multiple exercise paradigms. We conducted a meta-analysis of 29 studies (N = 1111 participants) examining the effect of exercise on BDNF levels in three exercise paradigms: (1) a single session of exercise, (2) a session of exercise following a program of regular exercise, and (3) resting BDNF levels following a program of regular exercise. Moderators of this effect were also examined. Results demonstrated a moderate effect size for increases in BDNF following a single session of exercise (Hedges' g = 0.46, p < 0.001). Further, regular exercise intensified the effect of a session of exercise on BDNF levels (Hedges' g = 0.59, p = 0.02). Finally, results indicated a small effect of regular exercise on resting BDNF levels (Hedges' g = 0.27, p = 0.005). ... Effect size analysis supports the role of exercise as a strategy for enhancing BDNF activity in humans 
  48. ^ 48.0 48.1 48.2 48.3 Gomez-Pinilla F, Hillman C. The influence of exercise on cognitive abilities. Compr Physiol. January 2013, 3 (1): 403–428. PMC 3951958. PMID 23720292. doi:10.1002/cphy.c110063. 
  49. ^ 49.0 49.1 49.2 49.3 49.4 Erickson KI, Leckie RL, Weinstein AM. Physical activity, fitness, and gray matter volume. Neurobiol. Aging. September 2014,. 35 Suppl 2: S20–528 [9 December 2014]. PMC 4094356. PMID 24952993. doi:10.1016/j.neurobiolaging.2014.03.034. 
  50. ^ 50.0 50.1 50.2 Erickson KI, Miller DL, Roecklein KA. The aging hippocampus: interactions between exercise, depression, and BDNF. Neuroscientist. 2012, 18 (1): 82–97. PMC 3575139. PMID 21531985. doi:10.1177/1073858410397054. 
  51. ^ Lees C, Hopkins J. Effect of aerobic exercise on cognition, academic achievement, and psychosocial function in children: a systematic review of randomized control trials. Prev Chronic Dis. 2013, 10: E174. PMC 3809922. PMID 24157077. doi:10.5888/pcd10.130010. 
  52. ^ Carvalho A, Rea IM, Parimon T, Cusack BJ. Physical activity and cognitive function in individuals over 60 years of age: a systematic review. Clin Interv Aging. 2014, 9: 661–682. PMC 3990369. PMID 24748784. doi:10.2147/CIA.S55520. 
  53. ^ Guiney H, Machado L. Benefits of regular aerobic exercise for executive functioning in healthy populations. Psychon Bull Rev. February 2013, 20 (1): 73–86. PMID 23229442. doi:10.3758/s13423-012-0345-4. 
  54. ^ Buckley J, Cohen JD, Kramer AF, McAuley E, Mullen SP. Cognitive control in the self-regulation of physical activity and sedentary behavior. Front Hum Neurosci. 2014, 8: 747. PMC 4179677. PMID 25324754. doi:10.3389/fnhum.2014.00747. 
  55. ^ Human Echolocation. Journal of Vision. 2010, 10 (7): 1050. doi:10.1167/10.7.1050. 
  56. ^ Thaler L, Arnott SR, Goodale MA. Neural Correlates of Natural Human Echolocation in Early and Late Blind Echolocation Experts. PLOS ONE. 2011, 6: e20162. PMC 3102086. PMID 21633496. doi:10.1371/journal.pone.0020162. 
  57. ^ Thaler, L; Arnot, S.R.; Goodale, M.A. Neural correlates of natural human echolocation in early and late blind echolocation experts. Public Library of Science. 2011, 6 (5). 
  58. ^ Hart H, Radua J, Nakao T, Mataix-Cols D, Rubia K. Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: exploring task-specific, stimulant medication, and age effects. JAMA Psychiatry. February 2013, 70 (2): 185–198. PMID 23247506. doi:10.1001/jamapsychiatry.2013.277. 
  59. ^ Spencer TJ, Brown A, Seidman LJ, Valera EM, Makris N, Lomedico A, Faraone SV, Biederman J. Effect of psychostimulants on brain structure and function in ADHD: a qualitative literature review of magnetic resonance imaging-based neuroimaging studies. J. Clin. Psychiatry. September 2013, 74 (9): 902–917. PMC 3801446. PMID 24107764. doi:10.4088/JCP.12r08287. 
  60. ^ Frodl T, Skokauskas N. Meta-analysis of structural MRI studies in children and adults with attention deficit hyperactivity disorder indicates treatment effects.. Acta psychiatrica Scand. February 2012, 125 (2): 114–126. PMID 22118249. doi:10.1111/j.1600-0447.2011.01786.x. Basal ganglia regions like the right globus pallidus, the right putamen, and the nucleus caudatus are structurally affected in children with ADHD. These changes and alterations in limbic regions like ACC and amygdala are more pronounced in non-treated populations and seem to diminish over time from child to adulthood. Treatment seems to have positive effects on brain structure. 
  61. ^ Urban KR, Gao WJ. Methylphenidate and the juvenile brain: enhancement of attention at the expense of cortical plasticity?. Med. Hypotheses. December 2013, 81 (6): 988–994. PMC 3851931. PMID 24095262. doi:10.1016/j.mehy.2013.09.009. 
  62. ^ Urban KR, Gao WJ. Performance enhancement at the cost of potential brain plasticity: neural ramifications of nootropic drugs in the healthy developing brain. Front. Syst. Neurosci. 2014, 8: 38. PMC 4026746. PMID 24860437. doi:10.3389/fnsys.2014.00038. 
  63. ^ 63.0 63.1 63.2 Parry D.M.; 等. Immunocytochemical localization of GnRH precursor in the hypothalamus of European starlings during sexual maturation and photorefractoriness. J. Neuroendocrinol. 1997, 9: 235–243. doi:10.1046/j.1365-2826.1997.00575.x. 
  64. ^ 64.0 64.1 64.2 D.M. Parry, A.R. Goldsmith Ultrastructural evidence for changes in synaptic input to the hypothalamic luteinizing hormone-releasing hormone neurons in photosensitive and photorefractory starlings J. Neuroendocrinol., 5 (1993), pp. 387–395
  65. ^ 65.0 65.1 65.2 Wayne N.L.; 等. Seasonal fluctuations in the secretory response of neuroendocrine cells of Aplysia californica to inhibitors of protein kinase A and protein kinase C. Gen. Comp. Endocrinol. 1998, 109: 356–365. doi:10.1006/gcen.1997.7040. 
  66. ^ 66.0 66.1 66.2 M.A. Hofman, D.F. Swaab "Seasonal changes in the suprachiasmatic nucleus of man Neurosci. Lett. 1992; 139 , pp. 257–260
  67. ^ 67.0 67.1 67.2 67.3 F. Nottebohm A brain for all seasons: cyclical anatomical changes in song control nuclei of the canary brain Science, 214 (1981), pp. 1368–1370
  68. ^ 68.0 68.1 Takami S.; Urano A. The volume of the toad medial amygdala-anterior preoptic complex is sexually dimorphic and seasonally variable. Neurosci. Lett. 1984, 44: 253–258. doi:10.1016/0304-3940(84)90031-4. 
  69. ^ 69.0 69.1 J.J. Xiong et al. Evidence for seasonal plasticity in the gonadotropin-releasing hormone (GnRH) system of the ewe: Changes in synaptic inputs onto GnRH neurons Endocrinology, 138 (1997), pp. 1240–1250
  70. ^ Barnea A.; Nottebohm F. Seasonal recruitment of hippocampal neurons in adult free-ranging black-capped chickadees. Proc. Natl. Acad. Sci. U.S.A. 1994, 91: 11217–11221. doi:10.1073/pnas.91.23.11217. 
  71. ^ Smulders T.V.; 等. Seasonal variation in hippocampal volume in a food-storing bird, the black-capped chickadee. J. Neurobiol. 1995, 27: 15–25. doi:10.1002/neu.480270103. 
  72. ^ Smith G.T. Seasonal plasticity in the song nuclei of wild rufous-sided towhees. Brain Res. 1996, 734: 79–85. doi:10.1016/0006-8993(96)00613-0. 
  73. ^ Anthony D. Tramontin, Eliot A. Brenowitz "Seasonal plasticity in the adult brain. Trends in Neurosciences, Volume 23, Issue 6, 1 June 2000, Pages 251–258
  74. ^ 74.0 74.1 Frost, S.B.; Barbay, S.; Friel, K.M.; Plautz, E.J.; Nudo, R.J. Reorganization of Remote Cortical Regions After Ischemic Brain Injury: A Potential Substrate for Stroke Recovery (PDF). Journal of Neurophysiology英语Journal of Neurophysiology. 2003, 89 (6): 3205–3214. PMID 12783955. doi:10.1152/jn.01143.2002. 
  75. ^ 75.0 75.1 Jain, Neeraj; Qi, HX; Collins, CE; Kaas, JH. Large-Scale Reorganization in the Somatosensory Cortex and Thalamus after Sensory Loss in Macaque Monkeys. The Journal of Neuroscience. 22 October 2008, 28 (43): 11042–11060. PMC 2613515. PMID 18945912. doi:10.1523/JNEUROSCI.2334-08.2008. 
  76. ^ Coulter Department of Biomedical Engineering: BME Faculty. Bme.gatech.edu. [12 June 2010]. (原始内容存档于2008-06-24). 
  77. ^ Progesterone offers no significant benefit in traumatic brain injury clinical trial. news.emory.edu. 2014-12-10 [2016-12-29]. 
  78. ^ 78.0 78.1 "The Principles of Psychology", William James 1890, Chapter IV, Habits
  79. ^ LeDoux, Joseph E. Synaptic self: how our brains become who we are. New York, United States: Viking. 2002: 137. ISBN 0-670-03028-7. 
  80. ^ Rosenzweig, Mark R. Aspects of the search for neural mechanisms of memory. Annual Review of Psychology. 1996, 47: 1–32. PMID 8624134. doi:10.1146/annurev.psych.47.1.1. 
  81. ^ 81.0 81.1 Meghan O'Rourke Train Your Brain 25 April 2007
  82. ^ Shaw, Christopher; McEachern, Jill (编). Toward a theory of neuroplasticity. London, England: Psychology Press. 2001. ISBN 978-1-84169-021-6. 
  83. ^ 83.0 83.1 Gonzalo, J英语Justo Gonzalo. (1945, 1950, 1952, 2010). Dinámica Cerebral. Facsimil edition of Volumen I 1945 and Volumen II 1950 (Madrid: Inst. S. Ramón y Cajal, CSIC), Suplemento I 1952 (Trab. Inst. Cajal Invest. Biol.), first ed. Suplemento II 2010. Santiago de Compostela, Spain: Red Temática en Tecnologías de Computación Artificial/Natural (RTNAC) and Universidad de Santiago de Compostela (USC). ISBN 978-84-9887-458-7. Open Access. For a recent review in English see this article (Open Access).English translation of: Article of 1952 and Indexes of Vol. I (1945) and Vol. II (1950), Open Access.
  84. ^ Stratton G.M. Some preliminary experiments on vision without inversion of the retinal image. Psychological Review. 1896, 3 (6): 611–7. doi:10.1037/h0072918. 
  85. ^ Gonzalo, J.英语Justo Gonzalo (1952). "Las funciones cerebrales humanas según nuevos datos y bases fisiológicas. Una introducción a los estudios de Dinámica Cerebral". Trabajos del Inst. Cajal de Investigaciones Biológicas XLIV: pp. 95–157. [Facsimil edition as `Splemento I´ in Dinámica Cerebral (2010), Open Access. Complete English translation, Open Access.
  86. ^ Diamond MC, Krech D, Rosenzweig MR. The Effects of an Enriched Environment on the Histology of the Rat Cerebral Cortex. J Comp Neurol. 1964, 123: 111–120. PMID 14199261. doi:10.1002/cne.901230110. 
  87. ^ Brain Science Podcast Episode #10, "Neuroplasticity"
  88. ^ Wired Science . Video: Mixed Feelings. PBS. [12 June 2010]. 
  89. ^ Shepherd Ivory Franz. Rkthomas.myweb.uga.edu. [12 June 2010]. (原始内容存档于2012-02-03). 
  90. ^ Colotla, Victor A.; Bach-y-Rita, Paul. Shepherd Ivory Franz: His contributions to neuropsychology and rehabilitation (PDF). Cognitive, Affective & Behavioral Neuroscience. 2002, 2 (2): 141–148. doi:10.3758/CABN.2.2.141. Archived from the original on 1 March 2012. 
  91. ^ Maguire, E. A.; Frackowiak, R. S.; Frith, C. D. Recalling routes around london: Activation of the right hippocampus in taxi drivers. The Journal of neuroscience : the official journal of the Society for Neuroscience. 1997, 17 (18): 7103–7110. PMID 9278544. 
  92. ^ Woollett, K.; Maguire, E. A. Acquiring "the Knowledge" of London's Layout Drives Structural Brain Changes. Current Biology. 2011, 21 (24): 2109–2114. PMC 3268356. PMID 22169537. doi:10.1016/j.cub.2011.11.018. 
  93. ^ Maguire, E. A.; Gadian, D. G.; Johnsrude, I. S.; Good, C. D.; Ashburner, J.; Frackowiak, R. S. J.; Frith, C. D. Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences. 2000, 97 (8): 4398–4403. Bibcode:2000PNAS...97.4398M. PMC 18253. PMID 10716738. doi:10.1073/pnas.070039597. 
  94. ^ http://www.kavliprize.org/prizes-and-laureates/prizes/2016-kavli-prize-neuroscience
  95. ^ Hubel, D.H.; Wiesel, T.N. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. The Journal of Physiology. 1 February 1970, 206 (2): 419–436. PMC 1348655. PMID 5498493. 
  96. ^ Bos, I; De Boever, P; Int Panis, L; Meeusen, R. Physical Activity, Air Pollution and the Brain. Sports Medicine. August 2014, 44: 1505–18. PMID 25119155. doi:10.1007/s40279-014-0222-6. 

Further reading[编辑]

Videos
Other readings
  • Chorost, Michael. Rebuilt: how becoming part computer made me more human. Boston: Houghton Mifflin. 2005. ISBN 0-618-37829-4. 

外部链接[编辑]