神经科学

维基百科,自由的百科全书
跳转至: 导航搜索
Vitruvian Medicine
醫學
其他基础学科参见生物学模板

神經科學英语:neuroscience),又稱神經生物學,是專門研究神經系統結構功能发育演化遗传学生物化學生理學藥理學病理學的一门科学。對行為及學習的研究都是神經科學的分支。

對人腦研究是個跨領域的範疇,當中涉及分子層面、細胞層面、神經小組、大型神經系統,如視覺神經系統腦幹腦皮層

最高層次的研究就是結合認知科學成為認知神經科學,其專家被稱為認知心理學家。一些研究人員相信認知神經科學提供對思維及知覺的全面了解,甚至可以代替心理學

神经科学致力于科学地研究神经系统。尽管神经科学学会成立于1969年,但是对于大脑的研究很早就已经开始。传统的神经科学是生物科学的一个分支。其研究范围包括对神经系统的结构,功能,进化史,发育,遗传,生理学,药理学和病理学研究,近年来神经科学的研究深度有了突破性成長,开始与其他学科有了越来越多的交叉与融合,如认知和神经心理学,精神疾病學,计算机科学,生物信息学,计算神经生物学,统计学,物理学,生物化学,犯罪學,医学科学和哲学陸續加入研究行列。

人類大腦分析圖

暫時最關心的課題是: 

最近研究进展:近年来,在量化分析大脑处理信息运作过程方面有了一些新的进展,如近年发表的《大脑处理信息量化模型和细节综合报告》、《基于量化模型的对大脑高效可靠处理信息实现机制的分析》、《基于大脑处理信息量化模型的对若干认知问题的分析》等所介绍的一系列论文综合整理分析已有的各层面的知识,建立有坚实解剖学基础、能联系各层面、量化描述大脑信息处理过程的模型和框架,提出血液循环在大脑处理信息过程中有时序控制作用,用量化模型结合结构风险最小化相关理论分析说明时序控制作用对大脑高效可靠处理信息的意义;汇总介绍量化模型中的细节;分析了大脑能正确而高效处理信息,使智力能够诞生的原因;分析了理论建立和应用过程的神经生理学原理、只能有相对真理的神经生理学原因;还建立和介绍了另外一种量化分析方案;等。

Drawing by Santiago Ramón y Cajal (1899) of neurons in the pigeon cerebellum
漂浮在罐子中的人腦



History[编辑]

Illustration from Gray's Anatomy (1918) of a lateral view of the human brain, featuring the hippocampus among other neuroanatomical features

The earliest study of the nervous system dates to ancient Egypt. Trepanation, the surgical practice of either drilling or scraping a hole into the skull for the purpose of curing headaches or mental disorders, or relieving cranial pressure, was first recorded during the Neolithic period. Manuscripts dating to 1700 BC英语1700 BC indicate that the Egyptians had some knowledge about symptoms of brain damage英语brain damage.[14]

Early views on the function of the brain regarded it to be a "cranial stuffing" of sorts. In Egypt, from the late Middle Kingdom onwards, the brain was regularly removed in preparation for mummification. It was believed at the time that the heart was the seat of intelligence. According to Herodotus, the first step of mummification was to "take a crooked piece of iron, and with it draw out the brain through the nostrils, thus getting rid of a portion, while the skull is cleared of the rest by rinsing with drugs."[15]

The view that the heart was the source of consciousness was not challenged until the time of the Greek英语Ancient Greek medicine physician Hippocrates. He believed that the brain was not only involved with sensation—since most specialized organs (e.g., eyes, ears, tongue) are located in the head near the brain—but was also the seat of intelligence. Plato also speculated that the brain was the seat of the rational part of the soul.[16] Aristotle, however, believed the heart was the center of intelligence and that the brain regulated the amount of heat from the heart.[17] This view was generally accepted until the Roman英语Medicine in ancient Rome physician Galen, a follower of Hippocrates and physician to Roman gladiators, observed that his patients lost their mental faculties when they had sustained damage to their brains.

Abulcasis, Averroes, Avicenna, Avenzoar, and Maimonides, active in the Medieval Muslim world, described a number of medical problems related to the brain. In Renaissance Europe, Vesalius (1514–1564), René Descartes (1596–1650), and Thomas Willis英语Thomas Willis (1621–1675) also made several contributions to neuroscience.

The Golgi stain英语Golgi's method first allowed for the visualization of individual neurons.

In the first half of the 19th century, Jean Pierre Flourens英语Jean Pierre Flourens pioneered the experimental method of carrying out localized lesions of the brain in living animals describing their effects on motricity, sensibility and behavior. Studies of the brain became more sophisticated after the invention of the microscope and the development of a staining procedure by Camillo Golgi during the late 1890s. The procedure used a silver chromate salt to reveal the intricate structures of individual neurons. His technique was used by Santiago Ramón y Cajal and led to the formation of the neuron doctrine英语neuron doctrine, the hypothesis that the functional unit of the brain is the neuron.[18] Golgi and Ramón y Cajal shared the Nobel Prize in Physiology or Medicine in 1906 for their extensive observations, descriptions, and categorizations of neurons throughout the brain. While Luigi Galvani's pioneering work in the late 1700s had set the stage for studying the electrical excitability of muscles and neurons, it was in the late 19th century that Emil du Bois-Reymond英语Emil du Bois-Reymond, Johannes Peter Müller, and Hermann von Helmholtz demonstrated that the electrical excitation of neurons predictably affected the electrical states of adjacent neurons,[來源請求] and Richard Caton英语Richard Caton found electrical phenomena in the cerebral hemispheres of rabbits and monkeys.

In parallel with this research, work with brain-damaged patients by Paul Broca英语Paul Broca suggested that certain regions of the brain were responsible for certain functions. At the time, Broca's findings were seen as a confirmation of Franz Joseph Gall's theory that language was localized and that certain psychological functions英语mental process were localized in specific areas of the cerebral cortex.[19][20] The localization of function英语Functional specialization (brain) hypothesis was supported by observations of epileptic patients conducted by John Hughlings Jackson英语John Hughlings Jackson, who correctly inferred the organization of the motor cortex英语motor cortex by watching the progression of seizures through the body. Carl Wernicke英语Carl Wernicke further developed the theory of the specialization of specific brain structures in language comprehension and production. Modern research through neuroimaging英语history of neuroimaging techniques, still uses the Brodmann cerebral cytoarchitectonic map英语Cytoarchitectonics of the cerebral cortex (referring to study of cell structure) anatomical definitions from this era in continuing to show that distinct areas of the cortex are activated in the execution of specific tasks.[21]

During the 20th century, neuroscience began to be recognized as a distinct academic discipline in its own right, rather than as studies of the nervous system within other disciplines. Eric Kandel and collaborators have cited David Rioch英语David Rioch, Francis O. Schmitt英语Francis O. Schmitt, and Stephen Kuffler as having played critical roles in establishing the field.[22] Rioch originated the integration of basic anatomical and physiological research with clinical psychiatry at the Walter Reed Army Institute of Research英语Walter Reed Army Institute of Research, starting in the 1950s. During the same period, Schmitt established a neuroscience research program within the Biology Department at the Massachusetts Institute of Technology, bringing together biology, chemistry, physics, and mathematics. The first freestanding neuroscience department (then called Psychobiology) was founded in 1964 at the University of California, Irvine by James L. McGaugh英语James McGaugh.[來源請求] This was followed by the Department of Neurobiology英语Department of Neurobiology, Harvard Medical School at Harvard Medical School which was founded in 1966 by Stephen Kuffler.[來源請求]

The understanding of neurons and of nervous system function became increasingly precise and molecular during the 20th century. For example, in 1952, Alan Lloyd Hodgkin and Andrew Huxley presented a mathematical model for transmission of electrical signals in neurons of the giant axon of a squid, which they called "action potentials", and how they are initiated and propagated, known as the Hodgkin–Huxley model英语Hodgkin–Huxley model. In 1961–1962, Richard FitzHugh and J. Nagumo simplified Hodgkin–Huxley, in what is called the FitzHugh–Nagumo model. In 1962, Bernard Katz modeled neurotransmission英语neurotransmission across the space between neurons known as synapses. Beginning in 1966, Eric Kandel and collaborators examined biochemical changes in neurons associated with learning and memory storage in Aplysia. In 1981 Catherine Morris and Harold Lecar combined these models in the Morris–Lecar model英语Morris–Lecar model. Such increasingly quantitative work gave rise to numerous biological neuron model英语biological neuron models.

Modern neuroscience[编辑]

Human nervous system

The scientific study of the nervous system has increased significantly during the second half of the twentieth century, principally due to advances in molecular biology, electrophysiology, and computational neuroscience. This has allowed neuroscientists to study the nervous system in all its aspects: how it is structured, how it works, how it develops, how it malfunctions, and how it can be changed. For example, it has become possible to understand, in much detail, the complex processes occurring within a single neuron. Neurons are cells specialized for communication. They are able to communicate with neurons and other cell types through specialized junctions called synapses, at which electrical or electrochemical signals can be transmitted from one cell to another. Many neurons extrude long thin filaments of protoplasm called axons, which may extend to distant parts of the body and are capable of rapidly carrying electrical signals, influencing the activity of other neurons, muscles, or glands at their termination points. A nervous system emerges from the assemblage of neurons that are connected to each other.

In vertebrates, the nervous system can be split into two parts, the central nervous system (brain and spinal cord), and the peripheral nervous system. In many species — including all vertebrates — the nervous system is the most complex organ system in the body, with most of the complexity residing in the brain. The human brain alone contains around one hundred billion neurons and one hundred trillion synapses; it consists of thousands of distinguishable substructures, connected to each other in synaptic networks whose intricacies have only begun to be unraveled. The majority of the approximately 20,000–25,000 genes belonging to the human genome are expressed specifically in the brain. Due to the plasticity of the human brain, the structure of its synapses and their resulting functions change throughout life.[23] Thus the challenge of making sense of all this complexity is formidable.

Molecular and cellular neuroscience[编辑]

Photograph of a stained neuron in a chicken embryo

The study of the nervous system can be done at multiple levels, ranging from the molecular and cellular levels to the systems and cognitive levels. At the molecular level, the basic questions addressed in molecular neuroscience英语molecular neuroscience include the mechanisms by which neurons express and respond to molecular signals and how axons form complex connectivity patterns. At this level, tools from molecular biology and genetics are used to understand how neurons develop and how genetic changes affect biological functions. The morphology, molecular identity, and physiological characteristics of neurons and how they relate to different types of behavior are also of considerable interest.

The fundamental questions addressed in cellular neuroscience英语cellular neuroscience include the mechanisms of how neurons process signals physiologically and electrochemically. These questions include how signals are processed by neurites – thin extensions from a neuronal cell body英语Perikaryon, consisting of dendrites (specialized to receive synaptic inputs from other neurons) and axons (specialized to conduct nerve impulses called action potentials) – and somas (the cell bodies of the neurons containing the nucleus), and how neurotransmitters and electrical signals are used to process information in a neuron. Another major area of neuroscience is directed at investigations of the development英语neural development of the nervous system. These questions include the patterning and regionalization英语Regional specification of the nervous system, neural stem cells, differentiation of neurons and glia, neuronal migration英语neuronal migration, axonal and dendritic development, trophic interactions, and synapse formation英语Synaptogenesis.

Computational neurogenetic modeling英语Computational neurogenetic modeling is concerned with the study and development of dynamic neuronal models for modeling brain functions with respect to genes and dynamic interactions between genes.

Neural circuits and systems[编辑]

At the systems level, the questions addressed in systems neuroscience英语systems neuroscience include how neural circuits are formed and used anatomically and physiologically to produce functions such as reflexes, multisensory integration英语multisensory integration, motor coordination, circadian rhythms, emotional responses, learning, and memory. In other words, they address how these neural circuits function and the mechanisms through which behaviors are generated. For example, systems level analysis addresses questions concerning specific sensory and motor modalities: how does vision work? How do songbirds learn new songs and bats localize with ultrasound? How does the somatosensory system process tactile information? The related fields of neuroethology and neuropsychology address the question of how neural substrates underlie specific animal and human英语human behavior behaviors. Neuroendocrinology英语Neuroendocrinology and psychoneuroimmunology examine interactions between the nervous system and the endocrine and immune systems, respectively. Despite many advancements, the way networks of neurons perform complex cognitive processes and behaviors is still poorly understood.

Cognitive and behavioral neuroscience[编辑]

At the cognitive level, cognitive neuroscience addresses the questions of how psychological functions英语mental process are produced by neural circuitry. The emergence of powerful new measurement techniques such as neuroimaging (e.g., fMRI, PET, SPECT英语SPECT), electrophysiology, and human genetic analysis combined with sophisticated experimental techniques from cognitive psychology allows neuroscientist英语neuroscientists and psychologists to address abstract questions such as how human cognition and emotion are mapped to specific neural substrates. Although many studies still hold a reductionist stance looking for the neurobiological basis of cognitive phenomena, recent research shows that there is an interesting interplay between neuroscientific findings and conceptual research, soliciting and integrating both perspectives. For example, the neuroscience research on empathy solicited an interesting interdisciplinary debate involving philosophy, psychology and psychopathology.[24] Moreover, the neuroscientific identification of multiple memory systems related to different brain areas has challenged the idea of memory as a literal reproduction of the past, supporting a view of memory as a generative, constructive and dynamic process.[25]

Neuroscience is also allied with the social and behavioral sciences as well as nascent interdisciplinary fields such as neuroeconomics, decision theory, and social neuroscience to address complex questions about interactions of the brain with its environment.

Ultimately neuroscientists would like to understand every aspect of the nervous system, including how it works, how it develops, how it malfunctions, and how it can be altered or repaired. The specific topics that form the main foci of research change over time, driven by an ever-expanding base of knowledge and the availability of increasingly sophisticated technical methods. Over the long term, improvements in technology have been the primary drivers of progress. Developments in electron microscopy, computers, electronics, functional brain imaging, and most recently genetics and genomics, have all been major drivers of progress.

Insufficient study sizes[编辑]

Most studies in neurology have too few test subjects to be scientifically sure. Those insufficient size studies are the basis for all domain-specific英语domain-specific diagnoses in neuropsychiatry, since the few large enough studies there are always find individuals with the brain changes thought to be associated with a mental condition but without any of the symptoms. The only diagnoses that can be validated through large enough brain studies are those on serious brain damages英语brain injury and neurodegenerative diseases that destroy most of the brain.[26][27]

Translational research and medicine[编辑]

Parasagittal MRI of the head of a patient with benign familial macrocephaly英语macrocephaly

Neurology, psychiatry, neurosurgery, psychosurgery英语psychosurgery, anesthesiology and pain medicine, neuropathology英语neuropathology, neuroradiology英语neuroradiology, ophthalmology, otolaryngology, clinical neurophysiology英语clinical neurophysiology, addiction medicine英语addiction medicine, and sleep medicine英语sleep medicine are some medical specialties that specifically address the diseases of the nervous system. These terms also refer to clinical disciplines involving diagnosis and treatment of these diseases. Neurology works with diseases of the central and peripheral nervous systems, such as amyotrophic lateral sclerosis (ALS) and stroke, and their medical treatment. Psychiatry focuses on affective, behavioral, cognitive, and perceptual disorders. Anesthesiology focuses on perception of pain, and pharmacologic alteration of consciousness. Neuropathology focuses upon the classification and underlying pathogenic mechanisms of central and peripheral nervous system and muscle diseases, with an emphasis on morphologic, microscopic, and chemically observable alterations. Neurosurgery and psychosurgery work primarily with surgical treatment of diseases of the central and peripheral nervous systems. The boundaries between these specialties have been blurring recently as they are all influenced by basic research in neuroscience. Brain imaging also enables objective, biological insights into mental illness, which can lead to faster diagnosis, more accurate prognosis, and help assess patient progress over time.[28]

Integrative neuroscience英语Integrative neuroscience makes connections across these specialized areas of focus.

Major branches[编辑]

Modern neuroscience education and research activities can be very roughly categorized into the following major branches, based on the subject and scale of the system in examination as well as distinct experimental or curricular approaches. Individual neuroscientists, however, often work on questions that span several distinct subfields.

Branch Description
Affective neuroscience英语Affective neuroscience Affective neuroscience is the study of the neural mechanisms involved in emotion, typically through experimentation on animal models.[29]
Behavioral neuroscience Behavioral neuroscience (also known as biological psychology, physiological psychology, biopsychology, or psychobiology) is the application of the principles of biology (viz., neurobiology) to the study of genetic, physiological, and developmental mechanisms of behavior in humans and non-human animals.
Cellular neuroscience英语Cellular neuroscience Cellular neuroscience is the study of neurons at a cellular level including morphology and physiological properties.
Clinical neuroscience英语Clinical neuroscience This consists of medical specialties such as neurology and psychiatry, as well as many allied health professions英语allied health professions such as speech-language pathology. Neurology is the medical specialty that works with disorders of the nervous system. Psychiatry is the medical specialty that works with the disorders of the brain—which include various affective, behavioral, cognitive, and perceptual disorders. (Also see note below.)
Cognitive neuroscience Cognitive neuroscience is the study of the mechanisms underlying cognition with a specific focus on the neural substrates of mental processes.
Computational neuroscience Computational neuroscience is the study of brain function in terms of the information processing properties of the structures that make up the nervous system. Computational neuroscience can also refer to the use of computer simulations and theoretical models to study the function of the nervous system.
Cultural neuroscience英语Cultural neuroscience Cultural neuroscience is the study of how cultural values, practices and beliefs shape and are shaped by the mind, brain and genes across multiple timescales.[30]
Developmental neuroscience英语Developmental neuroscience Developmental neuroscience studies the processes that generate, shape, and reshape the nervous system and seeks to describe the cellular basis of neural development to address underlying mechanisms.
Evolutionary neuroscience英语Evolutionary neuroscience Evolutionary neuroscience is an interdisciplinary scientific research field that studies the evolution of nervous systems.
Molecular neuroscience英语Molecular neuroscience Molecular neuroscience is a branch of neuroscience that examines the biology of the nervous system with molecular biology, molecular genetics, protein chemistry, and related methodologies.
Neural engineering Neural engineering is a discipline within biomedical engineering that uses engineering techniques to understand, repair, replace, or enhance neural systems.
Neuroethology Neuroethology is an interdisciplinary branch that studies the neural basis of natural animal behavior.
Neurogastronomy英语Neurogastronomy Neurogastronomy is the study of flavor and how it affects sensation, cognition, and memory.[31]
Neuroheuristics英语Neuroheuristics Neuroheuristics (or Neuristics) is a transdisciplinary paradigm that studies the information processing effected by the brain as an outcome of nurture versus nature, at the crossing of top-down and bottom-up strategies.
Neuroimaging Neuroimaging includes the use of various techniques to either directly or indirectly image the structure and function of the brain.
Neuroinformatics Neuroinformatics is a discipline within bioinformatics that conducts the organization of neuroscience data and application of computational models and analytical tools.
Neurolinguistics Neurolinguistics is the study of the neural mechanisms in the human brain that control the comprehension, production, and acquisition of language.
Neurophysics英语Neurophysics Neurophysics investigates the fundamentally physical basis for the neurons, neural networks and the brain.
Neurophysiology Neurophysiology is the study of the functioning of the nervous system, generally using physiological techniques that include measurement and stimulation with electrodes or optically with ion- or voltage-sensitive dyes or light-sensitive channels.
Neuropsychology Neuropsychology is a discipline that resides under the umbrellas of both psychology and neuroscience, and is involved in activities in the arenas of both basic science and applied science. In psychology, it is most closely associated with biopsychology, clinical psychology, cognitive psychology, and developmental psychology. In neuroscience, it is most closely associated with the cognitive, behavioral, social, and affective neuroscience areas. In the applied and medical domain, it is related to neurology and psychiatry.
Paleoneurology英语Paleoneurology Paleoneurology is a field which combines techniques used in paleontology and archeology to study brain evolution, especially that of the human brain.
Social neuroscience Social neuroscience is an interdisciplinary field devoted to understanding how biological systems implement social processes and behavior, and to using biological concepts and methods to inform and refine theories of social processes and behavior.
Systems neuroscience英语Systems neuroscience Systems neuroscience is the study of the function of neural circuits and systems.

Neuroscience organizations[编辑]

The largest professional neuroscience organization is the Society for Neuroscience英语Society for Neuroscience (SFN), which is based in the United States but includes many members from other countries. Since its founding in 1969 the SFN has grown steadily: as of 2010 it recorded 40,290 members from 83 different countries.[32] Annual meetings, held each year in a different American city, draw attendance from researchers, postdoctoral fellows, graduate students, and undergraduates, as well as educational institutions, funding agencies, publishers, and hundreds of businesses that supply products used in research.

Other major organizations devoted to neuroscience include the International Brain Research Organization英语International Brain Research Organization (IBRO), which holds its meetings in a country from a different part of the world each year, and the Federation of European Neuroscience Societies英语Federation of European Neuroscience Societies (FENS), which holds a meeting in a different European city every two years. FENS comprises a set of 32 national-level organizations, including the British Neuroscience Association英语British Neuroscience Association, the German Neuroscience Society (Neurowissenschaftliche Gesellschaft), and the French Société des Neurosciences. The first National Honor Society in Neuroscience, Nu Rho Psi英语Nu Rho Psi, was founded in 2006.

In 2013, the BRAIN Initiative英语BRAIN Initiative was announced in the US.

Public education and outreach[编辑]

In addition to conducting traditional research in laboratory settings, neuroscientists have also been involved in the promotion of awareness and knowledge英语public awareness of science about the nervous system among the general public and government officials. Such promotions have been done by both individual neuroscientists and large organizations. For example, individual neuroscientists have promoted neuroscience education among young students by organizing the International Brain Bee英语International Brain Bee, which is an academic competition for high school or secondary school students worldwide.[33] In the United States, large organizations such as the Society for Neuroscience have promoted neuroscience education by developing a primer called Brain Facts,[34] collaborating with public school teachers to develop Neuroscience Core Concepts for K-12 teachers and students,[35] and cosponsoring a campaign with the Dana Foundation英语Dana Foundation called Brain Awareness Week to increase public awareness about the progress and benefits of brain research.[36] In Canada, the CIHR Canadian National Brain Bee is held annually at McMaster University.[37]

Finally, neuroscientists have also collaborated with other education experts to study and refine educational techniques to optimize learning among students, an emerging field called educational neuroscience英语educational neuroscience.[38] Federal agencies in the United States, such as the National Institute of Health (NIH)[39] and National Science Foundation (NSF),[40] have also funded research that pertains to best practices in teaching and learning of neuroscience concepts.

See also[编辑]

References[编辑]

  1. ^ Neuroscience. Merriam-Webster Medical Dictionary. 
  2. ^ Neurobiology. Dictionary.com. [2017-01-22]. 
  3. ^ Ayd, Frank J., Jr. Lexicon of Psychiatry, Neurology and the Neurosciences. Lippincott, Williams & Wilkins. 2000: 688. ISBN 0781724686. 
  4. ^ Shulman, Robert G. Neuroscience: A Multidisciplinary, Multilevel Field. Brain Imaging: What it Can (and Cannot) Tell Us About Consciousness. Oxford University Press. 2013: 59. ISBN 9780199838721. 
  5. ^ Longstaff, Alan. BIOS Instant Notes in Neuroscience. Garland Science. 2011: v. ISBN 9780415607698. 
  6. ^ Marlin L Languis; James J Buffer; Daniel Martin; 等 (编). Cognitive Science: Contributions to Educational Practice. Routledge. 2012: ix. ISBN 9780415615174. 
  7. ^ Ogawa, Hiroto; Oka, Kotaro. Methods in Neuroethological Research. Springer. 2013: v. ISBN 9784431543305. 
  8. ^ Tanner, Kimberly D. Issues in Neuroscience Education: Making Connections. CBE— Life Sciences Education. 2006-01-01, 5 (2): 85. doi:10.1187/cbe.06-04-0156. ISSN 1931-7913. PMC 1618510. 
  9. ^ Zull, J. (2002). The art of changing the brain: Enriching the practice of teaching by exploring the biology of learning. Sterling, Virginia: Stylus Publishing, LLC
  10. ^ History of IBRO. International Brain Research Organization. 2010. [失效連結]
  11. ^ The Beginning 互联网档案馆存檔,存档日期April 21, 2012,., International Society for Neurochemistry
  12. ^ About EBBS. European Brain and Behaviour Society. 2009. 
  13. ^ About SfN. Society for Neuroscience. 
  14. ^ Mohamed W. The Edwin Smith Surgical Papyrus: Neuroscience in Ancient Egypt. IBRO History of Neuroscience. 2008 [2014-07-06]. 
  15. ^ Herodotus. The Histories: Book II (Euterpe). 440BCE. 
  16. ^ Plato. Timaeus. 360BCE. 
  17. ^ Finger, Stanley. Origins of Neuroscience: A History of Explorations into Brain Function 3rd. New York: Oxford University Press, USA. 2001: 3–17. ISBN 0-19-514694-8. 
  18. ^ Guillery, R. Observations of synaptic structures: origins of the neuron doctrine and its current status. Philos Trans R Soc Lond B Biol Sci. Jun 2005, 360 (1458): 1281–307. doi:10.1098/rstb.2003.1459. PMC 1569502. PMID 16147523. 
  19. ^ Greenblatt SH. Phrenology in the science and culture of the 19th century. Neurosurg. 1995, 37 (4): 790–805. doi:10.1227/00006123-199510000-00025. PMID 8559310. 
  20. ^ Bear MF; Connors BW; Paradiso MA. Neuroscience: Exploring the Brain 2nd. Philadelphia: Lippincott Williams & Wilkins. 2001. ISBN 0-7817-3944-6. 
  21. ^ Kandel ER; Schwartz JH; Jessel TM. Principles of Neural Science英语Principles of Neural Science 4th. New York: McGraw-Hill. 2000. ISBN 0-8385-7701-6. 
  22. ^ Cowan, W.M.; Harter, D.H.; Kandel, E.R. The emergence of modern neuroscience: Some implications for neurology and psychiatry. Annual Review of Neuroscience. 2000, 23: 345–346. doi:10.1146/annurev.neuro.23.1.343. PMID 10845068. 
  23. ^ The United States Department of Health and Human Services. Mental Health: A Report of the Surgeon General. "Chapter 2: The Fundamentals of Mental Health and Mental Illness" pp 38 [1] Retrieved May 21, 2012
  24. ^ Aragona M, Kotzalidis GD, Puzella A. (2013) The many faces of empathy, between phenomenology and neuroscience. Archives of Psychiatry and Psychotherapy, 4:5-12 http://www.archivespp.pl/uploads/images/2013_15_4/5Aragona_APP_4_2013.pdf
  25. ^ Ofengenden, Tzofit (2014). Memory formation and belief. Dialogues in Philosophy, Mental and Neuro Sciences, 7(2):34–44.
  26. ^ K. Button et al. "Power failure: why small sample size undermines the reliability of neuroscience", Nature Reviews Neuroscience 2013
  27. ^ Fang, Steen och Casadevall, "Misconduct accounts for the majority of retracted scientific publications", PNAS 2012.
  28. ^ Lepage M. Research at the Brain Imaging Centre. Douglas Mental Health University Institute. 2010. (原始内容存档于March 5, 2012). 
  29. ^ Panksepp J. A role for "affective neuroscience" in understanding stress: the case of separation distress circuitry. (编) Puglisi-Allegra S; Oliverio A. Psychobiology of Stress. Dordrecht, Netherlands: Kluwer Academic. 1990: 41–58. ISBN 0-7923-0682-1. 
  30. ^ Chiao, J.Y. & Ambady, N. (2007). Cultural neuroscience: Parsing universality and diversity across levels of analysis. In Kitayama, S. and Cohen, D. (Eds.) Handbook of Cultural Psychology, Guilford Press, New York, pp. 237-254.
  31. ^ 1933-, Shepherd, Gordon M.,. Neurogastronomy : how the brain creates flavor and why it matters. ISBN 9780231159111. OCLC 882238865. 
  32. ^ Financial and organizational highlights (PDF). Society for Neuroscience. (原始内容 (PDF)存档于September 15, 2012). 
  33. ^ About the International Brain Bee. The International Brain Bee. 
  34. ^ Brain Facts: A Primer on the Brain and Nervous System. Society for Neuroscience. 
  35. ^ Neuroscience Core Concepts: The Essential Principles of Neuroscience. Society for Neuroscience. (原始内容存档于April 15, 2012). 
  36. ^ Brain Awareness Week Campaign. The Dana Foundation. 
  37. ^ Official CIHR Canadian National Brain Bee Website. [24 September 2014]. (原始内容存档于May 30, 2014). 
  38. ^ Goswami U. Neuroscience, education and special education. Br J of Spec Educ. 2004, 31 (4): 175–183. doi:10.1111/j.0952-3383.2004.00352.x. 
  39. ^ The SEPA Program. NIH. [September 23, 2011]. (原始内容存档于September 20, 2011). 
  40. ^ About Education and Human Resources. NSF. [September 23, 2011]. 

Further reading[编辑]

External links[编辑]

Wikibooks-logo.svg
您可以在維基教科書中查找此百科条目的相關電子教程:


神經科學的分支[编辑]

  1. 情感神經科學Affective Neuroscience英语Affective Neuroscience
  2. 行為神經科學Behavioural Neuroscience英语Behavioural Neuroscience
  3. 臨床神經科學Clinical Neuroscience英语Clinical Neuroscience)- 包括神經學神經外科精神醫學神經放射醫學Neuroradiology英语Neuroradiology)等
  4. 認知神經科學
  5. 計算神經科學
  6. 神經系統的發育Developmental Neuroscience英语Developmental Neuroscience
  7. 演化神經科學Evolutionary Neuroscience英语Evolutionary Neuroscience
  8. 基因影像学Imaging Genetics英语Imaging Genetics
  9. 分子神經科學Molecular Neuroscience英语Molecular Neuroscience
  10. 神經工程學
  11. 神經解剖學
  12. 疾病的神經生物學Neurobiology of disease)
  13. 神經化學
  14. 神經經濟學
  15. 神經胚胎學Neuroembryology
  16. 神經內分泌學Neuroendocrinology英语Neuroendocrinology
  17. 神經流行病學Neuroepidemiology英语Neuroepidemiology
  18. 神經工效學Neuroergonomics英语Neuroergonomics
  19. 神經行為學
  20. 神經遺傳學Neurogenetics英语Neurogenetics
  21. 神經免疫學Neuroimmunology英语Neuroimmunology
  22. 神經病理學Neuropathology英语Neuropathology
  23. 神經藥理學Neuropharmacology英语Neuropharmacology
  24. 神經物理學Neurophysics英语Neurophysics
  25. 神經生理學
  26. 神經毒理學Neurotoxicology
  27. 感官神經科學Sensory Neuroscience英语Sensory Neuroscience
  28. 系統神經科學Systems Neuroscience英语Systems Neuroscience

參考文獻[编辑]

引用[编辑]

教科書[编辑]

  • Bear, M. F. et. al. Eds. (1995). Neuroscience: Exploring The Brain. Baltimore, Maryland, Williams and Wilkins. ISBN 0781739446
  • Kandel, Eric, James Schwartz, and Thomas Jessel. 2000. Principles of Neural Science. 4th ed. McGraw-Hill, New York ISBN 0838577016

著名文獻[编辑]

外部連結[编辑]

參見[编辑]

外部链接[编辑]

Wikibooks-logo.svg
您可以在維基教科書中查找此百科条目的相關電子教程: