−1
此條目需要补充更多来源。 (2016年4月3日) |
| ||||
---|---|---|---|---|
| ||||
命名 | ||||
小寫 | 负一 | |||
大寫 | 负壹 | |||
序數詞 | 第負一 negative first | |||
識別 | ||||
種類 | 整數 | |||
性質 | ||||
質因數分解 | 單位元 | |||
表示方式 | ||||
值 | −1 | |||
算筹 | ||||
二进制 | 1(2) | |||
三进制 | 1(3) | |||
四进制 | 1(4) | |||
五进制 | 1(5) | |||
八进制 | 1(8) | |||
十二进制 | 1(12) | |||
十六进制 | 1(16) | |||
在數學中,負一寫作 −1,是 1 的加法逆元,即當 −1 加上 1 之後就變為 0。−1 是介於 −2 與 0 之間的整數,亦是最大的負整數。
在軟體開發中,用來表示變量包含無用的信息,亦能作為函數錯誤時的傳回值。
在编程语言中,取决于第一个元素是用 0 还是 1 表示,−1 可以用来索引数组的最后一个元素,或者倒数第二个元素。
−1 和 1 有许多相似但略有不同的特性。
代數性質
將一數字乘上-1的動作,等價於將此數值變號。藉由分配律,以及1是乘法運算的單位元之公理,對於實數x,我們得到
這裡我們使用了"任意實數x乘上0等於0",將x從等式中約掉。
也就是,
故(−1) · x是 x的相反數。
負一平方
−1的平方亦即−1乘於−1,等於1。意即,兩負實數相乘為一正實數。
代數證明此結果
第一個等式取自上一段落的結果。第二個等式是根據「−1是1的加法逆元」。 再使用分配律,我們得到
第三個等式依據是:1是乘法運算的單位元。然後在等式前後加上1
以上運算適用於任意環。
負一的平方根
複數滿足,也可視為-1的平方根。另一个能滿足x2 = −1的複數x是−i。[1]四元數的代數包含複數平面,等式x2 = −1擁有無限多組解。
負一的乘冪
我們定義,即代數x的−1次方,或代數x的倒數。可將此定義結合指數定律 。 負數整數形式的指數可以拓展到環的逆元素,定義作為的乘法逆元。
函式或矩陣右上的-1不是指數,而是反函數與反矩陣。例如:是的反函數,是反正弦函數。
负一的对数
包括-1在内的所有负数在实数域中是没有对数的,但在复数域,根据欧拉恒等式,可以得出-1的自然对数。
維數
空集的歸納維數被定義為-1。在抽象幾何學中,空多胞形的維數亦被定義為-1[2]。
計算機的表示法
大多數計算機系統使用二補數來表示負號整數。此系統中,所有位元皆為一以表示-1,若以8-bit有號整數系統表示,即為"11111111",或十六進位制的"FF"。若將-1解讀為無號整數,n個一將表示為2n − 1,且較有號整數系統能容納更大數值。例如,8-bit的"11111111"表示為。
在 Setun計算機中 以倒轉的阿拉伯數字一「1」表示[3]。
參見條目
參考文獻
- ^ Ask Dr. Math. Math Forum. [2012-10-14]. (原始内容存档于2019-08-15).
- ^ Guy Inchbald. Vertex figures: The complete vertex and general vertex figures. steelpillow. 2005-01-06 [2016-08-02]. (原始内容存档于2016-08-19).
- ^ N.A.Krinitsky; G.A.Mironov; G.D.Frolov. Chapter 10. Program-controlled machine Setun. M.R.Shura-Bura (编). Programming. Moscow. 1963 (俄语).