志愿者困境

维基百科,自由的百科全书
跳转至: 导航搜索

志愿者困境的博弈模型是,有N个参与者,每人都面临要么牺牲自己小部分利益,要么选择搭便车

威廉·庞士东[1] 用如下场景来描述该博弈:有一个社区都停电了,社区里所有居民都知道,只要有一个人花钱给电力公司打电话,电力公司就会修复这个问题。但是如果没有志愿者,所有人都面临一直没电的情况。如果有一个人决定做志愿者,其他人都会因为没有做而获益。

该博弈衍生出很多实验,但所有实验的结果都与标准博弈论预测相违背。

收益矩阵[编辑]

该博弈的收益矩阵如下:

志愿者困境的收益矩阵
另外至少有一个人合作 其他人都不合作
合作 0 0
对抗 1 -10


参见[编辑]

参考资料[编辑]

  1. ^ William Poundstone: Prisoner's Dilemma: John von Neumann, Game Theory, and the Puzzle of the Bomb (1992)