全纯函数

维基百科,自由的百科全书
跳到导航 跳到搜索
直角坐标网(上)經一全纯函数f共形映射後的結果(下)

全纯函数holomorphic function)是复分析研究的中心对象;它们是定义在复平面开子集上的,在复平面中取值的,在每点上皆复可微的函数。这是比实可微强得多的条件,暗示著此函数无穷可微并可以用泰勒级数來描述。

解析函数analytic function)一词经常可以和“全纯函数”互相交换使用,虽然前者有几个其他含义。

全纯函数有时称为正则函数。在整个复平面上都全纯的函数称为整函数(entire function)。「在一点全纯」不仅表示在可微,而且表示在某个中心为的复平面上的开邻域上可微。

双全纯biholomorphic)表示一个有全纯逆函数的全纯函数。

定义[编辑]

的开子集,且为一个函数。

  • 我们称是在中一点是复可微的(complex differentiable)或全纯的,当且仅当该极限存在:
  • 上任取一点均全纯,则称全纯
  • 特别地,若函数在整个复平面全纯,我们称这个函数为整函数

其中,极限取所有趋向的复数列,并对所有这种序列差的商趋向同一个数,另外,这个可微性的概念和实可微性有几个相同性质:它是线性的,并服从乘积,商和链式法则

下面是一个等价的定义:一个复函数全纯当且仅当它满足柯西-黎曼方程

范例[编辑]

有理函数[编辑]

  • 所有复系数的有理函数,在除去极点以外的区域均为全纯。例如,函数上为全纯函数。

幂级数定义的函数[编辑]

复系数幂级数,且收敛半径不为零,我们记为其收敛区域。

函数

为全纯函数,且任取.事实上,这个函数在上无穷可导。

指数函数为整函数,同样地,三角函数(可通过指数函数使用欧拉公式定义)与双曲函数同样为整函数。

复对数[编辑]

若在一个连通集上的函数满足条件:,则称其为一个复对数函数

另有一等价定义,即若全纯函数上以为导数,且存在一点,使得这一点,则称其为一个复对数函数

的任意开子集上,若有一个复对数,那么任取整数,函数也为上的复对数函数。

幂函数[编辑]

的任意开子集上,若有一个复对数,那么任取复数,在阶幂函数可以定义为

特别地,任取整数,有,满足,我们称此表达式为阶幂的定义式。另外,记(若对于正实数,这种定义方式可能与其通常含义存在冲突)。

性质[编辑]

因为复微分是线性的,并且服从积、商、链式法则,所以全纯函数的和、积及复合是全纯的,而两个全纯函数的商在所有分母非0的地方全纯。

每个全纯函数在每一点无穷可微。它和它自己的泰勒级数相等,而泰勒级数在每个完全位于定义域内的开圆盘上收敛。泰勒级数也可能在一个更大的圆盘上收敛;例如,对数的泰勒级数在每个不包含0的圆盘上收敛,甚至在复实轴的附近也是如此。证明请参看证明全纯函数解析

若把等同起来,则全纯函数和满足柯西-黎曼方程的双实变量函数相同,该方程组含有两个偏微分方程

在非0导数的点的附近,全纯函数是共形的(或称保角的)。因为他们保持了小图形的角度和形状(但尺寸可能改变)。

柯西积分公式表明每个全纯函数在圆盘内的值由它在盘边界上的取值所完全决定。

几个变量[编辑]

多复變函數的复解析函数定义为在一点全纯和解析,如果它局部可以(在一个多盘,也即中心在该点的圆盘直积)扩张为收敛的各个变量的幂级数。这个条件比柯西-黎曼方程要强;事实上它可以这样表述:

一个多复变量函数是全纯的当且仅当它满足柯西-黎曼方程并且局部平方可积

扩展到泛函分析[编辑]

全纯函数的概念可以扩展到泛函分析中的无穷维空间。Fréchet导数条目介绍了巴拿赫空间上的全纯函数的概念。

参看[编辑]