跳至內容

單射

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書

數學裏,單射函數(或稱內射函數、嵌射函數[1]、一對一函數,英文稱injection、injective function 或 one-to-one function)為一函數,其將不同的輸入值對應到不同的函數值上。更精確地說,函數f被稱為是單射的,當對每一對應域內的y,存在最多一個定義域內的x使得f(x) = y

由從X 映射至Y 的單射函數所組成的集合標記為YX,該符號的由來為下降階乘冪。當XY 分別為具有m 個及n 個元素的有限集合時,從X 映射至Y 的單射函數數量可以以下降階乘冪表示為nm

定義

[編輯]

f 為一函數,且其定義域為一集合X,當且僅當對所有於X 內的元素ab,當f(a) = f(b)時,a = b,則該函數為單射函數;等價地說,當ab時,f(a) ≠ f(b)

以邏輯符號表示如下:

換質換位律,該敘述邏輯等價於

例子與反例

[編輯]
  • 對任一集合XX上的恆等函數為單射的。
  • 函數f : R → R,其定義為f(x) = 2x + 1,是單射的。
  • 函數g : R → R,其定義為g(x) = x2,不是單射的,因為g(1) = 1 = g(−1)。但若將g的定義域限在非負實數[0,+∞)內,則g是單射的。
  • 指數函數是單射的。
  • 自然對數函數是單射的。
  • 函數,不是單射的,因為 g(0) = g(1)。

形象化地說,當定義域和對應域都是實數集 R時,單射函數f : R → R為一絕不會與任一水平線相交超過一點的圖。

單射函數為可逆函數

[編輯]

具有左反函數的函數,必為單射。此處的條件(具有左反函數),比具有反函數弱:給定一函數f : XY,若存在一函數g : YX,使得對X內的每個元素x

g(f(x)) = x

則稱gf左反函數,而上式也就推出f為單射函數。

相反地,每個具非空定義域的單射函數f 都會有個左反函數g[2]。須注意的是,g 不一定會是f反函數,因為相反順序的函數複合fg 不一定也會是Y 上的恆等函數

事實上,要將一單射函數f : X → Y變成對射函數,只需要將其對應域Y替換成其值域J = f(X)就行了。亦即,令g : X → J,使其對所有X內的xg(x) = f(x);如此g便為滿射的了。確實,f可以分解成inclJ,Yog,其中inclJ,Y是由JY內含映射

其他性質

[編輯]
  • fg皆為單射的,則f o g亦為單射的。
單射複合
  • g o f為單射的,則f為單射的(但g不必然要是)。
  • f : X → Y是單射的當且僅當當給定兩函數g, h : W → X會使得f o g = f o h時,則g = h
  • f : X → Y為單射的且AX子集,則f −1(f(A)) = A
  • f : X → Y是單射的且AB皆為X的子集,則f(A ∩ B) = f(A) ∩ f(B)。
  • 任一函數 h : W → Y 皆可分解為 h = f o g 其中 f 是單射而 g 是滿射。此分解至多差一個自然同構, f 可以設想為從 h(W) 到 Y內含映射
  • f : X → Y 是單射,則在基數的意義下 Y 的元質數量不少於 X
  • XY 皆為有限集,則 f : X → Y 是單射當且僅當它是滿射。
  • 內含映射總是單射。

範疇論的觀點

[編輯]

範疇論的語言來說,單射函數恰好是集合範疇內的單態射

另見

[編輯]

參考資料

[編輯]
  1. ^ injection - 嵌射;單射頁面存檔備份,存於互聯網檔案館),國家教育研究院雙語詞彙、學術名詞暨辭書資訊網
  2. ^ Injection iff Left Inverse [單射當且僅當有左逆]. proofwiki.org. [2021-09-01]. (原始內容存檔於2022-03-10) (英語). 

參考文獻

[編輯]

外部連結

[編輯]