跳转到内容

期权

这是一篇优良条目,点击此处获取更多信息。
本页使用了标题或全文手工转换
维基百科,自由的百科全书
(重定向自期权
“Option”的各地常用译名
中国大陆期权
台湾选择权
港澳期权
日本選択権取引
期权买方与卖方在不同市场预期的情况下,会在买权与卖权市场分别做出的决定。

期权(英语:Option,中国大陆、香港称作期权,台湾称作选择权,在台湾“期权”一词用以作为“期货与选择权”之合称),是一种选择交易与否的权利。当合约买方付出权利金(Premium)后,若享有在特定时间内(或在某特定时间)向合约卖方依特定条件或履约价格[1]:449-550Exercise Price, Strike Price,或称行使价、执行价格[2]:168),买入或卖出一定数量标的物的权利,这种权利就称为期权。

期权使买方取得能在规定时间内按价格买卖某项资产的权利,因此届时可以选择履约以赚取利益,也可以放弃产生有限损失;但是期权卖方一旦收取买方的权利金后,在买方的要求下就有履约的义务。因为期权交易中的的买卖双方权利义务不对等,因此他与现货远期合约期货合约、交换合约等强调买卖双方权利义务相等的传统金融商品不同。[3]:147

历史

[编辑]
泰勒斯时代的橄榄榨汁机。

具备期权概念的合约在古代就已经出现[4]。根据亚里士多德的《政治学》一书,最早的期权买家是古希腊哲学家数学家米利都的泰利斯。当时,他透过某种方式预计了下一次产季的橄榄收获量会比往年大。他于是在淡季时买下了来年春天能够使用多台橄榄压榨机的权利。第二年春天,当橄榄收获量的确大于预期时,他行使了期权,获得了榨汁机使用权。随后,他以极高价格再将此使用权转租出去,获得利润[5][6]。《圣经创世纪》中也有期权概念的记载。以撒的幼子雅各为了和拉班的小女儿拉结结婚,签订了一个类似期权的合约——雅各同意以为拉班工作7年(其实他最后总共做了14年)为权利金,得到和拉结结婚的权利[7][8]

1640荷兰画家对郁金香狂热所画的插画。

现代期权的滥觞可追溯到17世纪初期的荷兰,当时该国正处于郁金香狂热郁金香球茎对当时的荷兰人来说是一种投机性商品,价格被哄抬到极高的地步,因此单纯现货买卖已无法满足投机者的需求。期权便是以具备高杠杆的特性在此时期诞生。当时市场上已出现买进和卖出期权的概念。在买进期权的场合,郁金香的买家只需要付出少额权利金,就有权在某段时间内照履约价格买进郁金香球茎。如果价格上涨,则买方就可向卖方依履约价格低价买进郁金香球茎,此时买权的买方会有获利,但卖方会产生亏损。在卖出期权的场合,当郁金香价格下跌时,卖权的买方可以将郁金香球茎以履约价格高价卖给卖权卖方,此时卖方有获利,买方则有损失。[3]:147-148

在郁金香热的最高峰,1636至1637年年初,当时荷兰的郁金香市场已发展至没有实体郁金香花茎交易的程度,因为郁金香的生长速度跟不上市场的运作速度。在当时,出现了一种“风中交易”(荷兰语Windhandel)的郁金香期货买卖:卖家承诺将在隔年交出特定种类与重量的郁金香球茎,而买家拥有买下的权力;同时,市场上的价差可以透过现金结算。但是因为其实郁金香的花色是来自于病毒入侵的结果,难以掌握,当时大多数的期权合约其实难以实现[9]:29。郁金香狂热最后在1637年结束。当时郁金香价格暴跌,卖权买方纷纷要求履约,希望能将郁金香以较高的履约价卖给卖权卖方不过卖方却无法交割,导致当时期权市场崩溃,市场泡沫破灭[3]:147-148

芝加哥期权交易所英语Chicago Board Options Exchangelogo

期权合约在美国出现的时间非常早,当18世纪华尔街股票市场开始萌芽的时候,已经有一种称为“特权”(Privilege)的合约开始交易,该合约极类似今日意义上的期权。不过在1973年以前,美国的期权交易都是以店头市场交易的方式进行,直到芝加哥期权交易所英语Chicago Board Options Exchange在该年成立之后,集中交易的期权才开始出现[3]:148华语圈最早的期权交易起源是1986年新加坡日经225指数期权(Nikkei 225 Index Options)。香港的第一款期权产品则是1993年香港联合交易所推出的恒生指数期权[10]香港的第一种股票期权则在1995年推出,第一种ETF期权则在2000年开始交易。目前,香港有全亚洲最大的期权交易市场[8]中华民国中央银行自1997年开始开放银行办理新台币对外币期权业务,为台湾店头期权市场的开端。2001年12月24日,台湾期货交易所开始推出台股股价指数期权业务,如今台湾的集中交易所已经有数百档的股票期权合约交易[3]:148中国大陆的期权市场则在2017年3月开始投入交易[11]

期权市场

[编辑]

期权交易市场可以分为集中与店头市场,最大差异在于合约的标准化。一般而言,集中市场的合约内容标准化程度较高,交易成本与违约风险小。店头市场的 特色在于多样化,但是违约风险较高,其内容设计常随着交易者的需求而改变。期权的标的物可以是任何具有价格风险的商品,例如[3]:148

期货期权的到期日不一定与期货相同。标普500期货只在一年4个季月到期,但期货期权的到期日包括了每一个交易日。

根据美国期货业协会的统计,2023年全球期货及期权合约的成交量达1373亿张。其中,1082亿张是期权合约,291亿张是期货合约。[12]以标的物的类别计算,股票占81.7%,外汇占5.1%,利率占4.5%。

分类

[编辑]

种类

[编辑]

市场上最常见的种类是认购期权和认沽期权。这两款期权合称为香草期权(Vanilla Option),取自于最常见的冰淇淋口味。

  • 买入期权(Call Option)赋予持有者买进标的物的权利。它又称作看涨期权、认购期权及买权。
  • 卖出期权(Put Option)赋予持有者卖出标的物的权利。它又称作看空期权、认沽期权及卖权。

其他种类的期权均属于奇异期权(Exotic Option)。

障碍期权
障碍期权(Barrier Option)设有敲入/敲出(knock in/out)价格。触发相关条件后,期权才会生效或作废。设有敲出条件的障碍期权,依照是否有剩余价值可分成两种。单一障碍期权共有八个基本类型,由Call和Put,及以下四个障碍条件组成
  • 上升并敲入(up and in)
  • 上升并敲出(up and out)
  • 下跌并敲入(down and in)
  • 下跌并敲出(down and out)
双重障碍期权
双重障碍期权(Double Barrier Option)同时设有敲入/敲出价格,并可分为两大类。第一类是,障碍期权只在敲入后,才可被敲出。另一类是,敲入及敲出条件视为独立事件,即任何时候都可被敲出。
触价期权
触价期权(Touch Option)设有触价(touch)或无触价(no touch)条件。标的物在有效期内达到触价条件,期权会即时结算,持有人可获取固定收益。对于无触价期权,如有效期内未曾触价,持有人在到期时可获取固定收益。如同障碍期权,触价期权也可设有两个条件,称为双重触价期权。
二元期权
二元期权(Binary Option)的回报率在交易开始时就告确定。长仓及短仓的最大收入(或损失)均为固定值,不受标的物与行使价的价差影响。
亚式期权
亚式期权(Asian Option)的结算价以期内的平均值计算,而非只按到期日的现价计算。平均值的取样依合约而定,例如,可只计算有效期内每个交易日的收市价。
复合期权
复合期权(Compound Option)以其他期权合约为标的物,共有四款。[13]
  • 基于看涨期权的看涨期权(Call on a Call)
  • 基于看空期权的看涨期权(Call on a Put)
  • 基于看涨期权的看空期权(Put on a Call)
  • 基于看空期权的看空期权(Put on a Put)

行使方式

[编辑]

期权是一种金融衍生工具[14][15]:6。与远期合约期货合约相同,期权合约也有到期日,可按照行使方式(Exercise Style)分类。若买方只能在到期日当天选择行使权利与否,则称为该期权为欧式European Style);如果买方可以在到期前任何时间行使权利,则称为该期权为美式American Style[3]:147。但买方在到期前行使权利,将会失去剩余的时间值。对于不派发股息的股票,买方一般不会提早行使。如果期权的到期日与股票的除净日十分接近,期权的时间值或少于分派的股息。此时,买家提早行使期权将可获得较高的收益。百慕大期权(Bermudan Option)容许持有人在到期前的特定日子行使,取名自位于美洲及欧洲之间的百慕大

期权合约规格

[编辑]

所有期权合约都是买方与卖方之间的风险投资协议合约。期权合约有时会很复杂,但是常见的期权合约通常包含以下要素,这是美国标准化的期权合约规定[1]:449-550

  • 标的物(Underlying):欲交易的项目和类别(股票、债券、外汇、金融指数及商品的现货或期货)。
  • 单位合约数量(Contract Size):和期货相同,期权也有规定的单位合约数量,具体的数字依合约内容与交易所不同而有所差异。美国期权结算公司英语Options Clearing Corporation规定的标准期权是100股,费城股票交易所美元对英镑的期权单位合约则是3万1250英镑。
  • 履约日期(Expiration Date):月期权在每个月的第三个星期五到期,季期权则在每个季月的最后一日到期。交易所会持续推出1年后到期的股票期权,期权交易活跃的股票则提供最长3年后到期的合约。定型化期权合约的推出有季节性,因此期权合约的开始日与履约日期大多相当集中。
  • 履约价格(Strike Price):履约价格是合约买方在履约日期买卖特定标的物所依据的价格。同一种标的物得期权合约,多有数个不同的履约价格,而此通常依照现货价格加减一定百分比所定。如果股价大幅波动,交易所通常在翌日提供新履约价的期权。

常见的期权信息表格通常如下所示:

XX公司收盘价 履约价格 买权 卖权
8月 9月 10月 8月 9月 10月
92⅞ 80 13⅜ r r r r r
92⅞ 85 r ¼ r r
92⅞ 90 1⅞
92⅞ 95 r r r r
92⅞ 100 s r s s s

第一直行显示的是公司名称与当日普通股收盘价,第二直行显示合约的履约价格,接下来分别陈列履约日期在8月、9月与10月的买权、卖权权利金。r代表交易所当日没有该种交易,s则代表没有当月的期权合约[1]:550

标的物市价与期权损益

[编辑]

若以标的物“履约时[16]”市价(S)变动为横轴,期权合约产生的损益(π)变化为纵轴,在这样的平面上分析买权的买方、卖方与卖权的买方、卖方四种基本期权交易的型态,可以归纳为以下四表。其中K表示履约价格、C表示买权权利金、P表示卖权权利金[17]:443

买进买权

当市价小于履约价格(S<K)时,期权为价外,因行使权利不得益所以放弃行使,故仅损失权利金(-C)﹔当市价大于履约价格时(S>K),期权为价内,不但有行使利益(S-K),而且市价每涨1元,利益就增加1元,故斜线斜率为1。此时的损益两平点为 S=K+C 时[17]:444

买进卖权

当市价大于履约价格(S>K)时,期权为价外,因行使权利不得益所以放弃行使,故仅损失权利金(-P)﹔当市价小于履约价格时(S<K),期权为价内,不但有行使利益(K-S),而且市价每跌1元,利益就增加1元,故斜线斜率为-1。此时的损益两平点为 S=K-P 时[17]:444

卖出买权与卖出卖权

若为同一笔交易,则买进期权与卖出期权为零和游戏,因此卖出期权方与买进期权方的损益,在相同的S的时候,数值正负相反[17]:444

期权的价值

[编辑]

期权权利金是买权或卖权的买方必须付给卖方(期权出让人)的金额。权利金的具体数目取决于市场状况,例如供给、需求和其他经济变量。不论经济情况如何变动,期权买方损失的最多只是期权的权利金。因为已知的有限风险,买方不需要维持保证金的额度。另一方面,期权的卖方面临的风险和期货或现货市场的参与者相似,因为买权的卖方处于空头仓位,需要负担所有期权可能的义务,所以有保证信用的义务。举例来说,在外汇市场中,期权的卖方就必须缴交保证金。[2]:168

虽然市场因素是期权权利金的决定性因素,但是仍有几个用来计算权利金的基本原则,一般来说,期权权利金为实质价格与时间价格的总和,也就是[2]:168

其中,是权利金总价值,是权利金的实质价值(Intrinsic Value),是权利金的时间价值(Time Value)。相当重要的一点是,实质价值与时间价值均受到履约价及标的市场价格间差异的波动影响。[2]:168

实质价值

[编辑]

实质价值(Intrinsic Value,或称内生价值[3]:152、内涵价值 、内在价值[18]),是指标的物即期价格与期权履约价格之间的差异。如果履约价格低于标的即期价格,则称为买权有实质价格存在。如果反之,履约价格高于标的即期价格,则称为卖权具备实质价值。[2]:168

任何具备实质价值的期权被称为价内(或是正内生价值[3]:152In-the-Money,也称为实值期权),买入期权的履约价格比即期价格低时便称为价内;卖出期权的履约价较即期价格高时也称为价内。简单来说,只要是履约时期权买方可以赚到钱的合约就被称为是价内。价内的大小可以用数值表示。举例来说,在外汇市场中,若一卖权的履约价为$1.6/£,而即期价格为$1.4/£,则称为此卖权为$0.20的价内,因为立即执行卖权将会获得$0.20的现金利得。[2]:168

价内的相反,也就是期权买方履约时会亏损的合约,称为价外(Out-of-the-Money,也称为虚值期权)。买入期权的履约价格比即期价格高时便称为价外;卖出期权的履约价较即期价格低时也称为价外。价外的大小,和价内一样,也可以用数值表示。举例来说,在外汇市场中,若一卖权的履约价为$1.5/£,而即期价格为$1.7/£,则称为此卖权为$0.20的价外,因为立即执行卖权将会获得$0.20的现金损失。[2]:168

当权利金价值与即期价格相等时,称为价平(At-the-Money,也称为两平期权),此时买卖双方没有人赚钱,也没有人赔钱。[2]:168在现实情况下,即期价格甚少与履约价格完全相同,所以一般把最接近现价的一个(或两个)履约价视为ATM。例如某股票为$106.5,履约价$107及$108的期权都视为ATM。

另一种表示实质价值的方式是以内生价值表示。价内被称为正内生价值,而价外和价平被称为零内生价值;内生价值不可能为负值[3]:152

时间价值

[编辑]

时间价值(Time Value)是期权价格的第二个决定因素。因为期权在持有时间内会因为标的物的价格变动而使期权价值变动,就算目前期权为价外而没有内生价值,只要期权还在有效期限内,就仍有回到价内的机会,故时间价值通常是正值[3]:152。一般来说,到交割日的时间越久,期权权利金便越高,因为假如市场参与者可有四个月的时间决定要不要执行期权,而不是一两个月内决定的话,此时拥有买或卖的权利对他而言是较有价值的。举例来说,从二月开始,在六月到期的期权即可有四个月时间让即期价格变动至理想价格[2]:169。由于期权具备到期日越长,时间价格越大的特性,有人称期权为一种消耗型资产(Wasting Asset):因为就和二手车等商品一样,期权的价值也会随着时间衰减[3]:152

时间值可以是负数,也就是说,期权价格或会低于内在值。[19]其中一个常见的例子是深入价内的欧式期权,由于持有人无法提早行使,他损失了内在值至到期日的利息收入。假设行使价是X,利息机会成本。当利息成本足够大,超过了期权的保险价值(Insurance valvue),时间值就会变成负数。负的时间值在认购及认沽期权均会出现。

保险价值(I)与利息成本共同组成时间值。对于认沽期权(p0),

其中,S0是现价,D是股息。

即期价格变动的价值

[编辑]

标的物的即期价格变动是影响期权权利金最重要的原因之一。变动程度指的是在给定时间内价格波动的幅度,波动的幅度越大,即期价格达到理想价格的概率也越高,因此当一个产品的市场价格变动率很大时,期权权利金也会越高。一般来说,一个期权即便是在价外时,仍有利润机会。对于在价外的期权,在他们还没到期之前,投资者仍会愿意付一些权利金。因为期权在到期日之前,实质价格上有增加的可能性。[2]:169

期权定价

[编辑]

权利金的确切数字,关系到买卖双方的利益。不过,历史上第一个期权定价模型直到1970年代才面世。美国经济学家迈伦·舒尔斯费雪·布莱克共同提出布莱克-舒尔斯期权定价模型,简称B-S模式。[17]:447罗伯特·C·墨顿其后修改了数学模型,使其于有派发股息时亦可使用。1997年,迈伦·舒尔斯罗伯特·C·墨顿借该模型获得诺贝尔经济学奖费雪·布莱克在1995年离世,由于诺贝尔奖不会颁发给已死亡的人,以致他未能获奖。二项期权定价模型英语Binomial options pricing model是另一个重要的定价模型,可计算美式期权的理论值。后来的研究发现,当标的物价格持续地上升及下跌,二项期权定价模型会收敛至布莱克-舒尔斯模型。

布莱克-舒尔斯模型

[编辑]
Fischer Black
Myron Scholes
费雪·布雷克(左)及迈伦·舒尔兹(右)共同提出了期权定价模型

1973年,在延续了路易·巴舍利耶英语Louis Bachelier和较晚的罗伯特·默顿的研究后,美国经济学家修斯和财务经济学家布莱克推共同提出了布莱克-舒尔斯期权定价模式,简称B-S模型[17]:447[20]。布莱克-舒尔斯模型利用建立风险中性的投资组合来复制期权的回报,并为欧式期权的理论价格制定了一个封闭形式的解决方案[20][17]:447[21]虽然布莱克-舒尔斯模型背后的想法被认为是开创性的,仍有学者批评模型对于连续交易、恒定波动率和恒定利率的假设与现实不符。尽管如此,布莱克-舒尔斯模型仍然是现有金融市场分析中最重要的方法和基础之一[22]

在不考虑配发股息的欧式期权中,布莱克-舒尔斯模型认为会影响权利金的因素有五种:标的物价格(S)、履约价格(K)、隐含波动性(σ)、无风险利率(r)及有效期[17]:447对派发股息(D)的股票,可以把预期的股息以利率r折算至到期日,再从现价S0中扣除,得到新的现价S。此现价S可套用于B-S等式。

欧式期权遵从二次偏微分方程

解偏微分方程,得到理论价格:

其中:

在实际应用中,可以轻易得知内在值和期限,债券市场也能提供无风险利率的数据,只有隐含波动性是无法被直接观察。一般而言,隐含波动性都是透过把市场价格代入公式推算出来的。对于证券商投资银行来说,历史波幅可用作参考。其中一个做法是,在历史波幅加上边际利润作为隐含波动性,然后计算期权定价。

买权价格的影响因素

[编辑]

若以标的物价格讨论期权权利金的大小,当 S1>S2,则 C(S1) ≥ C(S2)。这是因为买权的价值包括内在价值与时间价值两部分,其中内在价值为标的物的现货价格减去履约价格。在其他条件(包括时间价值)不变的情况下,标的物价格越高,该买权的内在价值也越高,所以当买方欲行使其权利时,其利润也越大,买权的价格也应较高。[17]:447

加入履约价格讨论后,则当 K1>K2 时,知 C(S, K1) ≤ C(S, K2)。这是因为如果买权的履约价格越高,买权的内在价值越低,因此其价值应该较低。[17]:447

加入标的物的预期变动率讨论后,则当 σ12 时,知 C(S, K, σ1) ≥ C(S, K, σ2)。这是因为如果标的物之预期变动率越高,表示该标的物价格在未来涨过履约价格或跌破履约价格的可能性越大。由于买权的买方付出权利金后所取得的是行使买进标的物之权利,因此当标的物价格跌破履约价格时,他可以选择不履约而不必承担损失﹔当标的物价格高于履约价格时,买方则可以行使履约之权利而获利。所以标的物的价格预期变动率越高,买权的买方应越有可能获得更高利润,也因为如此,期权的价格自然也应较高[17]:447

加入无风险利率水平讨论后,则当 r1>r2 时,知 C(S, K, σ, r1) ≥ C(S, K, σ, r2)。这是因为在其他情况不变下,利率越高,买权买方在行使购入权利时所付出的履约价格折合现值将会较低,因此其作用就等于履约价格降低一样。而当履约价格较低时,买权的价值会较高,因此当利率较高时,买权的价格也会较高[17]:448

加入到期日之远近变量后,则当 t1>t2 时,则 C(S, K, σ, r, t1) ≥ C(S, K, σ, r, t2)。这是因为当距离买权到期日愈远,标的物之未来价格越可能发生变化,因此对取得买入权利的买方越有利。同时,若买权距离到期日越远,则买方再行使买进标的物之权利所付出之履约价格在折合现值时将越低,因此对买方也是有利。所以距离到期日较远之买权,其权利金就应该较高[17]:448

卖权价格的影响因素

[编辑]

若以标的物价格讨论期权权利金的大小,当S1>S2 时,知 C(S1) ≤ C(S2)。这是因为如果标的物价格越高,则其内在价值越低,因此卖权之价格也应该较低[17]:448

加入履约价格讨论后,则当 K1>K2 时,知 C(S, K1) ≥ C(S, K2)。这是因为如果卖权的履约价格越高,卖权的内在价值越高,因此其价值应该较高[17]:448

加入标的物的预期变动率讨论后,则当 σ12 时,知 C(S, K, σ1) ≥ C(S, K, σ2)。与买权相同,这是因为如果标的物之预期变动率越高,表示该标的物价格在未来涨过履约价格或跌破履约价格的可能性越大。由于卖权的买方付出权利金后所取得的是行使卖出标的物之权利,因此当标的物价价格超过履约价格时,他可以选择不履约而不必承担损失﹔当标的物价格低于履约价格时,买方则可以行使履约之权利而获利。所以标的物的价格预期变动率越高,卖权的买方应越有可能获得更高利润,也因为如此,期权的价格自然也应较高[17]:449

加入无风险利率水平讨论后,则当 r1>r2 时,知 C(S, K, σ, r1) ≤ C(S, K, σ, r2)。利率越高,卖权买方在行使权利时所收取之履约价格的折现值会越低,对其不利,因此卖权价格应较低[17]:449

加入到期日之远近变量后,则当 t1>t2 时,知 C(S, K, σ, r, t1) ≥ C(S, K, σ, r, t2)。这是因为当距离买权到期日愈远,标的物之未来价格越可能发生变化,因此对取得卖出权利的买方越有利。但是,若买全距离到期日月远,则买方再行使买进标的物之权利所付出之履约价格在折合现值时将越低,因此对买方反而不利。所以到期日之远近,对卖权价格的影响方向是不确定的[17]:449

随机波动模型

[编辑]

随机波动模型是一种在资产未确定分配下利用价格波动性模拟出价值的方式。自从1987年以来,人们观察到较低执行价格期权的市场隐含波动率通常高于较高执行价格的期权,并指出价格随机过程与波动过程具有套利相关性,此现象被认为表示了波动率会随时间和标的证券的价格变化而变化。随机波动模型的原理即是假设存在一独立不确定来源作为价格变化动力,将市场上价格的波动为随机波动[23][24]

蒙地卡罗方法

[编辑]

蒙地卡罗方法(英语:Monte Carlo method),也称“统计模拟方法”,是1940年代中期由于科学技术的发展和电子计算机的发明,而提出的一种以概率统计理论为指导的数值计算方法[25]。蒙地卡罗方法使用随机数(或更常见的伪随机数)来解决平常难以解决的计算问题[25];在面对具备较高复杂性的的期权的场合,传统的定价技术有时难以处理,在这些情况下,蒙特卡罗方法通常会是可以考虑采用的方法。与其他模型试图以微分方程式求出标的证券价格与期权价值间关系变化不同,蒙地卡罗方法使用电脑模拟生成标的资产的随机价格路径,其中每个价格路径都会导致期权的收益。这些收益的平均值可以求出期权的预期价值[26]

风险

[编辑]

交易许可等级

[编辑]

为了控制风险,证券商透过许可等级(appoval levels)限制客户可以使用的交易策略。在美国,证券商为期权交易划分最多5个许可等级,不过大多数券商把它简化为4级。许可等级愈低,风险愈低。券商可自行制定准则,决定批出哪一等级予她们的客户。常见的考虑因素包括,投资者的收入、总资产、交易经验及投资目标(保守、入息、增长及/或投机)。[27]

下表列出了各许可等级中,通常可使用的交易策略。实际可用的交易策略取决于各家证券商的决定。大多数券商把沽出认购和沽出认沽期权视为同一级别,即把第4级和第5级合并。

期权交易许可等级
等级 户口 交易策略
1 现金 沽出备兑认购期权(selling covered call)
沽出备兑认沽期权(selling cash-secured put)
2 现金 买入认购期权(long call)
买入认沽期权(long put)
3 保证金 垂直价差(vertial spreed)
蝶式价差(butterfly spread)
兀鹰价差(condor spread)
4 保证金 沽出裸认沽期权(selling naked put)
5 保证金 沽出裸认购期权(selling naked call)

存款保险与卖权

[编辑]

存款保险Deposit Insurance)的存在与期权中的卖权观念有关。存款保险是由银行以外的第三方机构来保障存款者利益的方式,当银行因例如超额信用贷款(例如1995年彰化第四信用合作社挤兑事件[28])或投资损失等方式导致破产时,存款保险机构将负责赔偿存款人的损失,事实上,银行需定期缴纳保费给存款保险机构,如同一般的保险。存款保险的存在与期权中的卖权观念有关,例如,当参加存款保险的银行价值为,负债总值(也就是存款人的总存款金额)为,自有资本为时,可以定义:

若银行获利,大于,存款人没有损失,因此存款保险公司也不需承担任何保障。但银行若经营失当导致银行清算将小于,也就是银行即便尽全力也无法偿还全部存款,存款保险公司将负责偿还存款人的损失()。此与期权中卖权的卖方有异曲同工之妙;这相当于是存款保险公司卖了一个卖权给投保银行,当银行价值亏损时,保险公司将支付之间的差额。因此科学上可以配合期权的卖权评价公式来估计存款保险的费率。[1]:570

延伸阅读

[编辑]

参考文献

[编辑]
  1. ^ 1.0 1.1 1.2 1.3 谢剑平. 財務管理:新觀念與本土化 [Financial Management: New Concepts with Unique Domestic Examples]. 台北市: 智胜文化. 1997. ISBN 957-729-065-5. 
  2. ^ 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 Suk H. Kim; Seung H. Kim. 谢栋梁; 苏秀雅 , 编. 國際財務管理. 台北市: 弘智文化. 2000. ISBN 957-0453-14-1. 
  3. ^ 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.11 陈达新; 周恒至. 財務風險管理:工具、衡量與未來發展 三版. 台北市: 双叶书廊. 2014. ISBN 978-986-5668-02-0. 
  4. ^ Abraham, Stephan. History of Financial Options - Investopedia. Investopedia. 2010-05-13 [2014-06-02]. (原始内容存档于2014-05-08). 
  5. ^ Sander, Mattias. Bondesson's Representation of the Variance Gamma Model and Monte Carlo Option Pricing.. Lund University. 2009. ISSN 1404-6342. 
  6. ^ Aristotle. Politics.
  7. ^ 圣经・创世记 29:1-30
  8. ^ 8.0 8.1 汤震宇. 期权的历史与现状 (PDF). 金程教育. [2019-03-10]. (原始内容存档 (PDF)于2021-07-11) (中文(中国大陆)). 
  9. ^ Chancellor, Edward. 李祐宁 , 编. 金融投機史. 新北市: 远足文化. 2017. ISBN 978-986-95031-6-7. 
  10. ^ 香港联合交易所期权结算所有限公司 The SEHK Options Clearing House Limited (SEOCH)
  11. ^ 简立宗. 大陸期權上路 艾揚蓄勢待發. 中时电子报. 2017-02-28 [2019-03-10]. (原始内容存档于2018-08-08) (中文(台湾)). 
  12. ^ Global futures and options volume hits record 137 billion contracts in 2023 | FIA. www.fia.org. Futures Industry Association. [2024-04-07]. (原始内容存档于2024-05-29). 
  13. ^ Cory Mitchell. Compound Option: Meaning, Variations, Example. investopedia. 
  14. ^ Brealey, Richard A.; Myers, Stewart, Principles of Corporate Finance 7th, McGraw-Hill, 2003, ISBN 978-0070529083, Chapter 20 
  15. ^ Hull, John C., Options, Futures and Other Derivatives 6th, Prentice-Hall, 2005 [2019-03-10], ISBN 0-13-149908-4, (原始内容存档于2016-07-29) 
  16. ^ 歐式選擇權需在到期時,才可進行履約。美式選擇權,則在到期日之前任何時點,買方皆可要求履約。. 元大期货-期权基本认识. [2024-05-19]. (原始内容存档于2024-08-02) (中文(繁体)). 
  17. ^ 17.00 17.01 17.02 17.03 17.04 17.05 17.06 17.07 17.08 17.09 17.10 17.11 17.12 17.13 17.14 17.15 17.16 17.17 武志亮. 投資學:分析與應用 二版. 台北市: 五南图书. 2005. ISBN 9571140384. 
  18. ^ 內涵價值 intrinsic value. 双语词汇、学术名词暨辞书信息网. 国家教育研究院. [2019-03-10]. (原始内容存档于2021-08-19). 
  19. ^ Clarke, Roger G.; De Silva, Harindra; Thorley, Steven. Fundamentals of futures and options. Charlottesville, VA: Research Foundation of CFA Institute. 2013. ISBN 9781934667637. 
  20. ^ 20.0 20.1 Black, Fischer and Myron S. Scholes. "The Pricing of Options and Corporate Liabilities", Journal of Political Economy页面存档备份,存于互联网档案馆), 81 (3), 637–654 (1973).
  21. ^ Das, Satyajit, Traders, Guns & Money: Knowns and unknowns in the dazzling world of derivatives 6th, London: Prentice-Hall, Chapter 1 'Financial WMDs – derivatives demagoguery,' p.22, 2006, ISBN 978-0-273-70474-4 
  22. ^ Hull, John C., Options, Futures and Other Derivatives 6th, Prentice-Hall, 2005, ISBN 0-13-149908-4 
  23. ^ Jim Gatheral, The Volatility Surface, A Practitioner's Guide, Wiley Finance, 2006 [2019-06-04], ISBN 978-0-471-79251-2, (原始内容存档于2012-01-29) 
  24. ^ 陈菁华. 利用快速傅立葉轉換於跳躍-發散與隨機波動模型之選擇權最適避險策略 (PDF) (硕士). 铭传大学财务金融学系. 2008 [2019-06-09]. (原始内容存档 (PDF)于2021-07-11). 
  25. ^ 25.0 25.1 Kroese, D. P.; Brereton, T.; Taimre, T.; Botev, Z. I. Why the Monte Carlo method is so important today. WIREs Comput Stat. 2014, 6: 386–392. doi:10.1002/wics.1314. 
  26. ^ Crack, Timothy Falcon, Basic Black–Scholes: Option Pricing and Trading 1st, pp. 91–102, 2004 [2019-06-09], ISBN 0-9700552-2-6, (原始内容存档于2018-12-21) 
  27. ^ Investor Bulletin: Opening an Options Account. U.S. Securities and Exchange Commission. 18 March 2015 [27 August 2022]. 
  28. ^ 赵甫平. 合庫接收彰化四信,將成為大贏家?. 商周知识库. 1995-08-10 [2019-03-09]. (原始内容存档于2021-08-19) (中文(台湾)).