乌洛托品:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
无编辑摘要
无编辑摘要
第1行: 第1行:
{{Chembox
{{chembox
| Verifiedfields = changed
| ImageFile=Hexamine.svg
| Watchedfields = changed
| ImageSize=120px
| verifiedrevid = 457472844
| IUPACName=
| Name =
| IUPACNameZh = 1,3,5,7-四氮杂三环[3.3.1.1<sup>3,7</sup>]癸烷
| ImageFile =
| OtherNames= 六亚甲基四胺<ref name="名称" />、环六亚甲基四胺
| ImageFileL1 = Hexamine.svg
|Section1={{Chembox Identifiers
| ImageFileR1 = Hexamine-3D-balls.png
| IUPACName = 1,3,5,7-Tetraazaadamantane
| IUPACNameZh = 1,3,5,7-四氮雜金剛烷
| OtherNames = 六亞甲基四胺、環六亞甲基四胺
| Section1 = {{Chembox Identifiers
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID = 3959
| ChemSpiderID = 3959
| UNII_Ref = {{fdacite|correct|FDA}}
| UNII_Ref = {{fdacite|correct|FDA}}
| UNII = J50OIX95QV
| UNII = J50OIX95QV
| ChEMBL_Ref = {{ebicite|changed|EBI}}
| ChEMBL_Ref = {{ebicite|correct|EBI}}
| ChEMBL = 1201270
| ChEMBL = 1201270
| KEGG_Ref = {{keggcite|correct|kegg}}
| KEGG_Ref = {{keggcite|correct|kegg}}
| KEGG = D00393
| KEGG = D00393
| Beilstein = 2018
| Gmelin = 26964
| DrugBank = DB06799
| InChI = 1/C6H12N4/c1-7-2-9-4-8(1)5-10(3-7)6-9/h1-6H2
| InChI = 1/C6H12N4/c1-7-2-9-4-8(1)5-10(3-7)6-9/h1-6H2
| InChIKey = VKYKSIONXSXAKP-UHFFFAOYAW
| InChIKey = VKYKSIONXSXAKP-UHFFFAOYAW
第26行: 第34行:
| ChEBI = 6824
| ChEBI = 6824
| PubChem =4101
| PubChem =4101
| RTECS = MN4725000
| UNNumber = 1328
| SMILES =C1N2CN3CN1CN(C2)C3
| SMILES =C1N2CN3CN1CN(C2)C3
| MeSHName =Methenamine
| MeSHName =Methenamine
}}
}}
|Section2= {{Chembox Properties
| Section2 = {{Chembox Properties
| Formula=C<sub>6</sub>H<sub>12</sub>N<sub>4</sub>
| Formula =C<sub>6</sub>H<sub>12</sub>N<sub>4</sub>
| MolarMass=140.186
| MolarMass =140.186
| Appearance=
| Appearance = 白色結晶固體
| Odor = 魚腥味,氨味
| Density =1,33 g/cm³ (20°C)
| BoilingPt=280 °C(升华)
| MeltingPt=
| Solubility =85.3&nbsp;g/100&nbsp;mL
| BoilingPt=280 °C 升华
| SolubleOther = 溶於[[氯仿]]、[[甲醇]]、[[乙醇]]、[[丙酮]]、[[苯]]、[[二甲苯]]、[[乙醚]]
| Solubility=85.3 g/100 ml (25 °C)
| Solubility1 =13.4 g/100 g(20 °C)
| Solvent1 = 氯仿
| Solubility2 =7.25 g/100 g(20 °C)
| Solvent2 = 甲醇
| Solubility3 =2.89 g/100 g(20 °C)
| Solvent3 = 乙醇
| Solubility4 =0.65 g/100 g(20 °C)
| Solvent4 = 丙酮
| Solubility5 =0.23 g/100 g(20 °C)
| Solvent5 = 苯
| Density =1.33 g/cm<sup>3</sup>(20 °C)
| pKa = 4.89<ref>{{cite journal | title=The acid-base behaviour of hexamine and its ''N''-acetyl derivatives | last=Cooney | first=A. P. | author2=Crampton, M. R. | author3=Golding, P. | journal=[[Perkin Transactions|J. Chem. Soc., Perkin Trans. 2]] | year=1986 | issue=6 | pages=835–839 | doi=10.1039/P29860000835}}</ref>
}}
}}
|Section3= {{Chembox Hazards
| Section3 =
| Section4 =
| MainHazards=
| Section5 =
| FlashPt=
| Section6 = {{Chembox Pharmacology
| Autoignition= 410 °C (770 °F)
| ATCCode_prefix = J01
| ATCCode_suffix = XX05
}}
| Section7 = {{Chembox Hazards
| MainHazards = 高度易燃,有害
| NFPA-H = 2
| NFPA-F = 3
| NFPA-R = 1
| GHSSignalWord = WARNING
| GHSPictograms = {{GHS02}} {{GHS07}}
| HPhrases = {{H-phrases|228|317}}
| PPhrases = {{P-phrases|210|240|241|261|272|280|302+352|321|333+313|363|370+378|501}}
| FlashPtC = 250
| AutoignitionPtC = 410
}}
}}
}}
}}


'''乌洛托品''',也'''六亚甲基四胺'''<ref name="名称">“六次甲基四胺”是不正确的名称,正确的应为“六亚甲基四胺”。</ref>,是一个与[[金刚烷]]结构类似的多环[[杂环化合物]],分子为C<sub>6</sub>H<sub>12</sub>N<sub>4</sub>。乌洛托品是白色可由[[甲醛]][[氨]]反应制备,分子中含有四个相互稠合的三氮[[己烷]]。有限可溶于水易溶于大多数有机[[溶剂]]。
'''乌洛托品'''({{lang-en|Urotropin}}),又称'''六亚甲基四胺''',是一種有機[[雜環化合物]],化學為(CH<sub>2</sub>)<sub>6</sub>N<sub>4</sub>。是一種白色化合物易溶於水和極性有機溶劑。它具有類似[[金刚烷]]的籠狀结构类似的多环[[杂环化合物]]。它可用於合成其他機化合物包括塑膠、藥物和橡膠添加劑。它在280 °C的真空中[[昇華]]。


==合成與性質==
乌洛托品有很广泛的应用。它可用作[[有机合成]]的原料、[[分析化学]]试剂、[[抗生素]]、燃料,在化工生产中也有很多用途。乌洛托品与[[发烟硝酸]]反应生成爆炸性很强的“旋风炸药”[[RDX]]。
烏洛托品由[[亞歷山大·布特列洛夫]]於1859年發現。<ref name="Butlerow1859">{{cite journal | url=https://books.google.com/books?id=NYs8AAAAIAAJ&pg=PA242 | title=Ueber einige Derivate des Jodmethylens | author=Butlerow, A. | journal=[[Liebigs Annalen|Ann. Chem. Pharm.]] | year=1859 | volume=111 | issue=2 | pages=242–252 | language=de | doi=10.1002/jlac.18591110219 | trans-title=On some derivatives of methylene iodide}} In this article, Butlerov discovered formaldehyde, which he called "dioxymethylen" (methylene dioxide) [page 247] because his empirical formula for it was incorrect (C<sub>4</sub>H<sub>4</sub>O<sub>4</sub>). On pages 249–250, he describes treating formaldehyde with ammonia gas, creating hexamine.</ref><ref name="Butlerow1860">{{cite journal | url=https://books.google.com/books?id=14lKAAAAYAAJ&pg=PA322 | title=Ueber ein neues Methylenderivat | author=Butlerow, A. | journal=Ann. Chem. Pharm. | year=1860 | volume=115 | issue=3 | pages=322–327 | doi=10.1002/jlac.18601150325 | trans-title=On a new methylene derivative | language=de}}</ref>
通過[[甲醛]]和[[氨]]的化合在工業中製備:<ref name="Ullmann">{{cite encyclopedia | chapter=Amines, Aliphatic | encyclopedia=Ullmann's Encyclopedia of Industrial Chemistry | publisher=Wiley-VCH Verlag GmbH | year=2000 | isbn=9783527306732 | doi=10.1002/14356007.a02_001 | last1=Eller | last2=Henkes | last3=Rossbacher | last4=Höke | first1=K. | first2=E. | first3=R. | first4=H.}}</ref>


: [[File:Synthesis Hexamine.svg|350px]]
乌洛托品的一些主要用途列在下面:<ref>Roempp Encyclopedia of Natural Products 1997</ref><ref>Ullmann's Encyclopedia of Industrial Chemistry 1995</ref>
*[[药物]]<ref>Lee BB, Simpson JM, Craig JC, Bhuta T. Methenamine hippurate for preventing urinary tract infections. Cochrane Database of Systematic Reviews 2007, Issue 4. Art. No.: CD003265. DOI: 10.1002/14651858.CD003265</ref><ref>Beers MH, Berkow R, editors. [[Merck Manual|The Merck Manual]], 17th edition. Whitehouse Station (NJ): Merck Research Laboratories; 1999. ISBN 0-911910-10-7</ref><ref>Rossi S, editor. [[Australian Medicines Handbook]] 2004. Adelaide: Australian Medicines Handbook; 2004. ISBN 0-9578521-4-2.</ref>
*[[橡胶]][[硫化]]的促进剂
*[[奶酪]]中的[[防腐剂]]
*[[酚醛树脂]]的固化剂
*[[燃料]],与[[1,3,5-三氧杂环己烷]]共用,燃烧时不会产生烟雾及灰烬,常用於一些加熱式[[野戰口糧]]。
*[[粘合剂]]
*[[腐蚀抑制剂]]
*[[蛋白质]]的修饰剂
*合成[[黑索金]]炸药(RDX)
*和[[過氧化氫]]在[[檸檬酸]]水溶液中反應生成炸藥[[HMTD]]
*生产[[除臭剂]]和束发剂


该反應可以在氣相和溶液中進行。
化学中:
*配置[[缓冲溶液]]
*[[分析化学|分析试剂]],测定离子含量
*[[色谱]]试剂
*[[Duff反应]](芳香烃的甲酰化)、[[Sommelet反应]](转化卤化苄为醛)、[[Delepine反应]](转化卤代烃为胺)中的试剂
[[File:Hexamethylenetetramine-pov-rod.png|thumb|right|300px|乌洛托品的笼状结构]]


烏洛托品具有[[四面體]]籠狀結構,類似於[[金剛烷]]。四個頂點被[[氮]]原子取代,氮原子由亞甲基連接。虽然分子形狀像一個籠子,但內部沒有可用於結合其他原子或分子的空隙,這與[[冠醚]]或更大的[[穴状配体]]結構不同。
==参考资料及注释==
<div class="references-small">
<references/>
</div>


==應用==
{{其他抗菌药}}
烏洛托品的主要用途是生產[[酚醛樹脂]]和酚醛樹脂模塑化合物的粉狀或液態製劑,並將其作為一種硬化成分添加。這些產品被用作粘合劑,例如用於煞車和離合器襯片、磨料產品、無紡布、模塑工藝生產的成型部件以及防火材料。<ref name=Ullmann/>

===醫療用途===
其[[扁桃酸]]鹽或[[馬尿酸]]鹽<ref name="forgotten">{{cite journal|doi=10.1586/14787210.2014.904202|title=Methenamine: A forgotten drug for preventing recurrent urinary tract infection in a multidrug resistance era|year=2014|last1=Lo|first1=Tze Shien|last2=Hammer|first2=Kimberly DP|last3=Zegarra|first3=Milagros|last4=Cho|first4=William CS|journal=Expert Review of Anti-Infective Therapy|volume=12|issue=5|pages=549–554|pmid=24689705|s2cid=207199202}}</ref>用於治療尿路感染。在酸性環境中,甲胺被認為通過轉化為[[甲醛]]而起到[[抗微生物劑|抗菌]]作用。<ref name="forgotten"/><ref>{{cite journal |last1=Chwa |first1=A |last2=Kavanagh |first2=K |last3=Linnebur |first3=SA |last4=Fixen |first4=DR |title=Evaluation of methenamine for urinary tract infection prevention in older adults: a review of the evidence. |journal=Therapeutic Advances in Drug Safety |date=2019 |volume=10 |pages=2042098619876749 |doi=10.1177/2042098619876749 |pmid=31579504 |pmc=6759703}}</ref>

由於甲醛的[[收斂劑|收斂性]],烏洛托品可作為非處方[[止汗劑]]使用。<ref>{{Cite journal |doi = 10.3109/03093649609164439|pmid = 8985996|year = 1996|last1 = Susak|first1 = Z.|title = The use of Methenamine as an antiperspirant for amputees|journal = Prosthetics and Orthotics International|volume = 20|issue = 3|pages = 172–5|last2 = Minkov|first2 = R.|last3 = Isakov|first3 = E.|s2cid = 24088433|doi-access = free}}</ref>

===固體燃料===
烏洛托品與[[1,3,5-三噁烷]]作為烏洛托品燃料片的成分,露營者、愛好者、軍隊和救援組織使用這些燃料片來加熱野營食品或軍用口糧。它無菸燃燒,具有30.0 MJ/kg的高[[能量密度]],燃燒時不液化,不留灰燼,但其煙霧有毒。

標準化的0.149 克烏洛托品片劑被消防實驗室用作清洁和可重复的火源,以測試地毯和墊子的可燃性。<ref name="schon">Alan H. Schoen (2004), [http://www.cpsc.gov/BUSINFO/methtabs.pdf ''Re: Equialence of methenamine Tablets Standard for Flammability of Carpets and Rugs''] {{webarchive|url=https://web.archive.org/web/20081005165422/https://www.cpsc.gov/businfo/methtabs.pdf |date=2008-10-05 }}. U.S. Consumer product Safety Commission, Washington, DC, July 29, 2004. Many other countries who still produce this include Russia, Saudi Arabia, China and Australia.</ref>

===食品添加劑===
烏洛托品可用作[[食品添加劑]]作為防腐劑([[INS編號]]為239)。它在歐盟已獲准,<ref>UK Food Standards Agency: {{cite web |url=http://www.food.gov.uk/safereating/chemsafe/additivesbranch/enumberlist |title=Current EU approved additives and their E Numbers |access-date=2011-10-27}}</ref>[[E編號]]為E239,但在美國、俄羅斯、澳大利亞或新西蘭未獲批准。<ref>Australia New Zealand Food Standards Code{{cite web |url=http://www.comlaw.gov.au/Details/F2011C00827 |title=Standard 1.2.4 - Labelling of ingredients |access-date=2011-10-27}}</ref>

===有機合成===
烏洛托品是[[有機合成]]中的常用[[試劑]]。<ref name="Blazzevic1979">{{cite journal | title=Hexamethylenetetramine, A Versatile Reagent in Organic Synthesis | author=Blažzević, N. | journal=[[Synthesis (journal)|Synthesis]] | year=1979 | volume=1979 | issue=3 | pages=161–176 | doi=10.1055/s-1979-28602 | author2=Kolbah, D. | author3=Belin, B. | author4=Šunjić, V. | author5=Kajfež, F.}}</ref>可用於[[達夫反應]](芳烴的甲酰化)<ref>{{OrgSynth | author = Allen, C. F. H. | author2 = Leubne, G. W. | title = Syringic Aldehyde| volume = 31 | pages = 92 | year = 1951 | prep = CV4P0866 |doi = 10.15227/orgsyn.031.0092}}</ref>,[[索姆萊反應]](將芐基鹵化物轉化為醛)<ref>{{OrgSynth | author = Wiberg, K. B. | title = 2-Thiophenaldehyde| collvol = 3 | collvolpages = 811| year = 1963 | prep = CV3P0811 |doi = 10.15227/orgsyn.000.0000}}</ref>和[[杜勒平反應]](從烷基鹵化物合成胺)<ref>{{OrgSynth | author = Bottini, A. T. | author2 = Dev, V. | author3 = Klinck, J. | title = 2-Bromoallylamine| volume = 43 | pages = 6| year = 1963 | prep = CV5P0121 | doi=10.15227/orgsyn.043.0006}}</ref>。

===炸藥===
六亞甲基四胺是生產[[RDX]]、[[HMX]]、[[HMTD]]以及[[C4炸藥]]<ref name=Ullmann/>的基礎成分。

==歷史用途==
[[File:Hexamethylenetetramine Bayer.jpg|thumb|來自[[拜耳]]([[法本公司]])的烏洛托品]]
在1895年,烏洛托品首次作為泌尿[[消毒藥水]]引入醫療領域。<ref>{{cite journal|doi=10.1001/jama.1913.04350190019006|title=An Experimental Study of the Antiseptic Value in the Urine of the Internal Use of Hexamethylenamin|year=1913|last1=Hinman|first1=Frank|journal=JAMA: The Journal of the American Medical Association|volume=61|issue=18|page=1601}}</ref>然而僅用於酸性尿液的情況,而[[硼酸]]用於治療鹼性尿液的尿路感染。<ref name=":0">{{Cite journal|title = On Urinary Antiseptics|last = Elliot|date = 1913|journal = British Medical Journal|volume = 98|pages = 685–686}}</ref>科學家 De Eds 發現,烏洛托品所處環境的酸度與其分解速度之間存在直接關聯。<ref name=":1">{{cite journal|last1=Heathcote|first1=Reginald St. A.|title=Hexamine as an Urinary Antiseptic: I. Its Rate of Hydrolysis at Different Hydrogen Ion Concentrations. II. Its Antiseptic Power Against Various Bacteria in Urine|journal=British Journal of Urology|volume=7|issue=1|year=1935|pages=9–32|issn=0007-1331|doi=10.1111/j.1464-410X.1935.tb11265.x}}</ref>因此它作為一種藥物的有效性在很大程度上取決於尿液的酸度,而不是給藥量。<ref name=":0" />在鹼性環境中,發現烏洛托品幾乎沒有活性。<ref name=":0" />

烏洛托品也被用作[[第一次世界大戰]]中接觸[[光氣]]的士兵的治療方法。隨後的研究表明,如果在接觸光氣之前服用大劑量的烏洛托品,則可以提供一定的保護作用,但在之後服用則沒有任何保護作用。<ref name="Diller1980">{{cite journal|last1=Diller|first1=Werner F.|title=The methenamine misunderstanding in the therapy of phosgene poisoning (review article)|journal=Archives of Toxicology|volume=46|issue=3–4|year=1980|pages=199–206|issn=0340-5761|doi=10.1007/BF00310435|pmid=7016075|s2cid=2423812}}</ref>

==參考資料==
{{Reflist}}

{{Other antibacterials}}


{{Authority control}}
{{Authority control}}

[[Category:含氮杂环]]
[[Category:防腐剂]]
[[Category:防腐剂]]
[[Category:有机化学试剂]]
[[Category:緩蝕劑]]
[[Category:固体燃料]]
[[Category:抗生素]]
[[Category:抗生素]]
[[Category:固体燃料]]
[[Category:含氮杂环]]
[[Category:有机化学试剂]]
[[Category:易制爆化学品]]
[[Category:易制爆化学品]]
[[Category:三環雜環化合物]]
[[Category:金刚烷骨架化合物]]
[[Category:金刚烷骨架化合物]]

2023年1月16日 (一) 12:27的版本

乌洛托品
IUPAC名
1,3,5,7-Tetraazaadamantane
1,3,5,7-四氮雜金剛烷
别名 六亞甲基四胺、環六亞甲基四胺
识别
CAS号 100-97-0  checkY
PubChem 4101
ChemSpider 3959
SMILES
 
  • C1N2CN3CN1CN(C2)C3
InChI
 
  • 1/C6H12N4/c1-7-2-9-4-8(1)5-10(3-7)6-9/h1-6H2
InChIKey VKYKSIONXSXAKP-UHFFFAOYAW
Beilstein 2018
Gmelin 26964
UN编号 1328
EINECS 202-905-8
ChEBI 6824
RTECS MN4725000
DrugBank DB06799
KEGG D00393
MeSH Methenamine
性质
化学式 C6H12N4
摩尔质量 140.186 g·mol⁻¹
外观 白色結晶固體
氣味 魚腥味,氨味
密度 1.33 g/cm3(20 °C)
沸点 280 °C(升华)
溶解性 85.3 g/100 mL
溶解性 溶於氯仿甲醇乙醇丙酮二甲苯乙醚
溶解性氯仿 13.4 g/100 g(20 °C)
溶解性甲醇 7.25 g/100 g(20 °C)
溶解性乙醇 2.89 g/100 g(20 °C)
溶解性丙酮 0.65 g/100 g(20 °C)
溶解性 0.23 g/100 g(20 °C)
pKa 4.89[1]
药理学
ATC代码 J01XX05J01
危险性
GHS危险性符号
《全球化学品统一分类和标签制度》(简称“GHS”)中易燃物的标签图案 《全球化学品统一分类和标签制度》(简称“GHS”)中有害物质的标签图案
GHS提示词 WARNING
H-术语 H228, H317
P-术语 P210, P240, P241, P261, P272, P280, P302+352, P321, P333+313, P363, P370+378, P501
主要危害 高度易燃,有害
NFPA 704
3
2
1
 
若非注明,所有数据均出自标准状态(25 ℃,100 kPa)下。

乌洛托品(英語:Urotropin),又称六亚甲基四胺,是一種有機雜環化合物,化學式為(CH2)6N4。是一種白色結晶化合物,易溶於水和極性有機溶劑。它具有類似金刚烷的籠狀结构类似的多环杂环化合物。它可用於合成其他有機化合物,包括塑膠、藥物和橡膠添加劑。它在280 °C的真空中昇華

合成與性質

烏洛托品由亞歷山大·布特列洛夫於1859年發現。[2][3] 通過甲醛的化合在工業中製備:[4]

该反應可以在氣相和溶液中進行。

烏洛托品具有四面體籠狀結構,類似於金剛烷。四個頂點被原子取代,氮原子由亞甲基連接。虽然分子形狀像一個籠子,但內部沒有可用於結合其他原子或分子的空隙,這與冠醚或更大的穴状配体結構不同。

應用

烏洛托品的主要用途是生產酚醛樹脂和酚醛樹脂模塑化合物的粉狀或液態製劑,並將其作為一種硬化成分添加。這些產品被用作粘合劑,例如用於煞車和離合器襯片、磨料產品、無紡布、模塑工藝生產的成型部件以及防火材料。[4]

醫療用途

扁桃酸鹽或馬尿酸[5]用於治療尿路感染。在酸性環境中,甲胺被認為通過轉化為甲醛而起到抗菌作用。[5][6]

由於甲醛的收斂性,烏洛托品可作為非處方止汗劑使用。[7]

固體燃料

烏洛托品與1,3,5-三噁烷作為烏洛托品燃料片的成分,露營者、愛好者、軍隊和救援組織使用這些燃料片來加熱野營食品或軍用口糧。它無菸燃燒,具有30.0 MJ/kg的高能量密度,燃燒時不液化,不留灰燼,但其煙霧有毒。

標準化的0.149 克烏洛托品片劑被消防實驗室用作清洁和可重复的火源,以測試地毯和墊子的可燃性。[8]

食品添加劑

烏洛托品可用作食品添加劑作為防腐劑(INS編號為239)。它在歐盟已獲准,[9]E編號為E239,但在美國、俄羅斯、澳大利亞或新西蘭未獲批准。[10]

有機合成

烏洛托品是有機合成中的常用試劑[11]可用於達夫反應(芳烴的甲酰化)[12]索姆萊反應(將芐基鹵化物轉化為醛)[13]杜勒平反應(從烷基鹵化物合成胺)[14]

炸藥

六亞甲基四胺是生產RDXHMXHMTD以及C4炸藥[4]的基礎成分。

歷史用途

來自拜耳法本公司)的烏洛托品

在1895年,烏洛托品首次作為泌尿消毒藥水引入醫療領域。[15]然而僅用於酸性尿液的情況,而硼酸用於治療鹼性尿液的尿路感染。[16]科學家 De Eds 發現,烏洛托品所處環境的酸度與其分解速度之間存在直接關聯。[17]因此它作為一種藥物的有效性在很大程度上取決於尿液的酸度,而不是給藥量。[16]在鹼性環境中,發現烏洛托品幾乎沒有活性。[16]

烏洛托品也被用作第一次世界大戰中接觸光氣的士兵的治療方法。隨後的研究表明,如果在接觸光氣之前服用大劑量的烏洛托品,則可以提供一定的保護作用,但在之後服用則沒有任何保護作用。[18]

參考資料

  1. ^ Cooney, A. P.; Crampton, M. R.; Golding, P. The acid-base behaviour of hexamine and its N-acetyl derivatives. J. Chem. Soc., Perkin Trans. 2. 1986, (6): 835–839. doi:10.1039/P29860000835. 
  2. ^ Butlerow, A. Ueber einige Derivate des Jodmethylens [On some derivatives of methylene iodide]. Ann. Chem. Pharm. 1859, 111 (2): 242–252. doi:10.1002/jlac.18591110219 (德语).  In this article, Butlerov discovered formaldehyde, which he called "dioxymethylen" (methylene dioxide) [page 247] because his empirical formula for it was incorrect (C4H4O4). On pages 249–250, he describes treating formaldehyde with ammonia gas, creating hexamine.
  3. ^ Butlerow, A. Ueber ein neues Methylenderivat [On a new methylene derivative]. Ann. Chem. Pharm. 1860, 115 (3): 322–327. doi:10.1002/jlac.18601150325 (德语). 
  4. ^ 4.0 4.1 4.2 Eller, K.; Henkes, E.; Rossbacher, R.; Höke, H. Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH. 2000. ISBN 9783527306732. doi:10.1002/14356007.a02_001.  |chapter=被忽略 (帮助)
  5. ^ 5.0 5.1 Lo, Tze Shien; Hammer, Kimberly DP; Zegarra, Milagros; Cho, William CS. Methenamine: A forgotten drug for preventing recurrent urinary tract infection in a multidrug resistance era. Expert Review of Anti-Infective Therapy. 2014, 12 (5): 549–554. PMID 24689705. S2CID 207199202. doi:10.1586/14787210.2014.904202. 
  6. ^ Chwa, A; Kavanagh, K; Linnebur, SA; Fixen, DR. Evaluation of methenamine for urinary tract infection prevention in older adults: a review of the evidence.. Therapeutic Advances in Drug Safety. 2019, 10: 2042098619876749. PMC 6759703可免费查阅. PMID 31579504. doi:10.1177/2042098619876749. 
  7. ^ Susak, Z.; Minkov, R.; Isakov, E. The use of Methenamine as an antiperspirant for amputees. Prosthetics and Orthotics International. 1996, 20 (3): 172–5. PMID 8985996. S2CID 24088433. doi:10.3109/03093649609164439可免费查阅. 
  8. ^ Alan H. Schoen (2004), Re: Equialence of methenamine Tablets Standard for Flammability of Carpets and Rugs 互联网档案馆存檔,存档日期2008-10-05.. U.S. Consumer product Safety Commission, Washington, DC, July 29, 2004. Many other countries who still produce this include Russia, Saudi Arabia, China and Australia.
  9. ^ UK Food Standards Agency: Current EU approved additives and their E Numbers. [2011-10-27]. 
  10. ^ Australia New Zealand Food Standards CodeStandard 1.2.4 - Labelling of ingredients. [2011-10-27]. 
  11. ^ Blažzević, N.; Kolbah, D.; Belin, B.; Šunjić, V.; Kajfež, F. Hexamethylenetetramine, A Versatile Reagent in Organic Synthesis. Synthesis. 1979, 1979 (3): 161–176. doi:10.1055/s-1979-28602. 
  12. ^ Allen, C. F. H. (1951). "Syringic Aldehyde". Org. Synth. 31: 92. 
  13. ^ Wiberg, K. B. (1963). "2-Thiophenaldehyde". Org. Synth.; Coll. Vol. 3: 811. 
  14. ^ Bottini, A. T. (1963). "2-Bromoallylamine". Org. Synth. 43: 6. 
  15. ^ Hinman, Frank. An Experimental Study of the Antiseptic Value in the Urine of the Internal Use of Hexamethylenamin. JAMA: The Journal of the American Medical Association. 1913, 61 (18): 1601. doi:10.1001/jama.1913.04350190019006. 
  16. ^ 16.0 16.1 16.2 Elliot. On Urinary Antiseptics. British Medical Journal. 1913, 98: 685–686. 
  17. ^ Heathcote, Reginald St. A. Hexamine as an Urinary Antiseptic: I. Its Rate of Hydrolysis at Different Hydrogen Ion Concentrations. II. Its Antiseptic Power Against Various Bacteria in Urine. British Journal of Urology. 1935, 7 (1): 9–32. ISSN 0007-1331. doi:10.1111/j.1464-410X.1935.tb11265.x. 
  18. ^ Diller, Werner F. The methenamine misunderstanding in the therapy of phosgene poisoning (review article). Archives of Toxicology. 1980, 46 (3–4): 199–206. ISSN 0340-5761. PMID 7016075. S2CID 2423812. doi:10.1007/BF00310435.