极正弦

维基百科,自由的百科全书

极正弦polar sine)是正弦函数的推广。 其将正弦函数从原本只能计算平面角推广到可以计算多胞形顶角。 极正弦函数通常记为psinpolsin[1]。 不同于一般的正弦,极正弦的输入值并非是角度,而是能代表特定立体角的向量组。

定义[编辑]

n维空间的n向量[编辑]

左侧3D体积的解释:平行六面体(对应极正弦定义中的),右侧:长方体(对应极正弦定义中的)。在更高维度上的解释是相似的

v1, ..., vnn ≥ 1)为n维空间(n)的非零欧几里德向量,该向量从平行多胞形的顶点定向,形成平行多胞形的边。则顶角的极正弦为:[1]

其中分子是行列式

其等价于具有向量边的平行多胞形的有符号超体积[2]

而分母是所有顶角边长的积:

它等于n超矩形的超体积,其边等于向量长度||v1||, ||v2||, ... ||vn||,而非向量本身。另见埃里克森的著作。[3]

平行多胞形有如“压扁的超矩形”,因此它的超体积比超矩形小,这意味着(可参阅附图的3D范例):

对于一般的正弦,只有在所有向量相互正交的情况下才能达到其中任一个极值。

n = 2的情况下,极正弦是两个向量之间角度的普通正弦[注 1]

n维角[编辑]

如果一个n维角有一个以该角之顶点为中心的n维球体,则从该角之顶点射出的n条射线会与该n维球体交于n个点,这些n个点在n维球体表面的(n−1)维球面空间中形成单纯形。此时将这个球面空间中单纯形的极正弦定义为该单纯形对应之对角的极正弦值。对于n维球面的单纯形S,如果顶点ViVj之间的边长为Eij,则其在高斯曲率K > 0之空间中的极正弦值由下式给出:[1]

高维空间[编辑]

可以使用格拉姆行列式定义适用于任何m维空间的非负极正弦。此时,分子为:

其中,上标的T代表矩阵的转置。只有当mn时,该值才可能非零。在m = n 的情况下,这相当于前面给出的定义之绝对值。在m < n退化的情况中,行列式将是奇异n × n矩阵,得到Ω = 0,因为此时在m维空间中不可能有n个线性独立向量。

性质[编辑]

向量互换[编辑]

由于行列式交换行的反对称性,因此只要两个向量互换,极正弦就会正负变号;不过,极正弦的绝对值并不会因此改变。

向量与标量乘法的不变性[编辑]

如果将代入极正弦的所有向量v1, ..., vn皆乘以一个标量的常数ci,则由于因式分解,极正弦的值不会改变。

如果有奇数个常数为负值,则极正弦的值会正负变号,但绝对值仍然会维持不变。

非线性独立的情况[编辑]

如果向量不是线性独立的,则极正弦值为零。而在维数m严格小于向量数n退化情况下,则极正弦也为零。

与对应的余弦之关系[编辑]

两个非零向量之间的角度之余弦值由下式给出:

其使用了点积和向量长的乘积。将此式与上面给出的极正弦绝对值的定义进行比较,可以得到:

特别是对于维数n = 2时,其等价于:

勾股定理

历史[编辑]

欧拉在18世纪时研究了极正弦。[4]

参见[编辑]

注释[编辑]

  1. ^ n = 2,此时的极正弦为。令角,角的始边为和角的终边为,且长度皆为单位长,若平行于轴,则向量、向量。则有并且,,则极正弦为,因此得到在二维空间中与无异。

参考文献[编辑]

  1. ^ 1.0 1.1 1.2 Weisstein, Eric W. (编). Polar Sine. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英语). 
  2. ^ Lerman, Gilad; Whitehouse, J. Tyler. On d-dimensional d-semimetrics and simplex-type inequalities for high-dimensional sine functions. Journal of Approximation Theory. 2009, 156: 52–81. S2CID 12794652. arXiv:0805.1430可免费查阅. doi:10.1016/j.jat.2008.03.005. 
  3. ^ Eriksson, F. The Law of Sines for Tetrahedra and n-Simplices. Geometriae Dedicata. 1978, 7: 71–80. S2CID 120391200. doi:10.1007/bf00181352. 
  4. ^ Euler, Leonhard. De mensura angulorum solidorum. Leonhardi Euleri Opera Omnia: 204–223. 

外部链接[编辑]