熔盐堆

维基百科,自由的百科全书
跳到导航 跳到搜索
熔盐反應爐系统图示
核燃料與冷卻劑都是以液態混和為一體方式存在。

熔盐反應爐英语:molten salt reactor, MSR)是核裂变反應爐的一种,屬於第四代反應爐,其主冷却剂英语nuclear reactor coolant以至燃料本身都是熔盐混合物,它可以在高温下工作(可获得更高的热效率)时保持低蒸氣壓,从而降低机械应力,提高安全性,并且比熔融纳冷却剂活性低。[1]

核燃料既可以是固体燃料棒,也可以溶于主冷却剂中,从而无需制造燃料棒,简化反應爐结构,使燃耗均匀化,并允许在线燃料后处理。在许多设计方案中核燃料,如 四氟化铀(UF4),溶于熔融的氟化物盐。爐芯用石墨英语nuclear graphite慢化剂,熔盐流体在其中达到临界。许多现代设计方案采用陶瓷燃料在石墨基质中均匀分布,熔盐提供低压高温冷却的形式。熔盐更有效地将热量带出爐芯,减少对泵、管道的需求,并因此而的缩小爐芯的尺寸。

在20世纪50年代這是新構想然而後續種種時代原因被美蘇兩國放棄,其他國家又缺乏預算和技術研發,導致停頓,但随着新材料工程的出现與時代要求變遷,这一技术重新受到了关注。[2] 美國早期的“飞行器反應爐试验英语Aircraft Reactor Experiment(1954)”的主要动因在于熔盐反應爐尺寸小,而“熔盐反應爐试验英语Molten-Salt Reactor Experiment(1965-69)”是钍燃料循环英语thorium fuel cycle增殖反應爐核电站的样机,但最後都沒有再持續發展。

历史[编辑]

飞行器反应堆试验[编辑]

橡树岭国家实验室的飞行器反应堆试验楼,后来它为熔盐堆试验而改建。

对熔盐堆的集中研究始于美国飞行器反应堆试验英语Aircraft Nuclear Propulsion(US Aircraft Reactor Experiment, ARE)。ARE是一个热功功率2.5 MWth的核反应堆试验,旨在使核反应堆达到可作为核动力轰炸机引擎的高功率密度。该计划促成了几个试验,其中的三个引擎测试实验统称为热转移反应堆实验:国家反应堆试验站(现在的爱达荷国家实验室英语Idaho National Laboratory)的HTRE-1,HTRE-2和HTRE-3。其中一个实验用熔融氟化物盐NaF-ZrF4-UF4(53-41-6 mol%)作为燃料,用氧化铍(BeO)作为慢化剂,用液态钠作为第二级冷却剂,峰值温度为摄氏860 °C。它在1954年以100 MW-小时连续运行了超过九天。本实验的金属结构和管道采用了铬镍铁600合金。[3]

熔盐堆试验[编辑]

MSRE设备图示

在20世纪60年代,橡树岭国家实验室(Oak Ridge National Laboratory, ORNL)在熔盐堆研究中居于领先,他们的大部分工作随着熔盐堆试验英语Molten-Salt Reactor Experiment(Molten-Salt Reactor Experiment, MSRE)达到顶峰。MSRE是一个热功功率7.4 MWth的试验堆,用以模拟固有安全超热钍增殖堆的中子“核”。它测试了铀和钚的熔盐燃料。被测试的235UF4液态燃料有着将废物减至最少的独特衰变路径,废物同位素的半衰期在50年以下。反应堆摄氏650度的炽热温度可以驱动高效热机——例如燃气轮机。为了便于中子测量,庞大而昂贵的钍盐增殖层被略去。

MSRE位于ORNL。MSRE管道、堆芯包壳和结构组件由哈斯特洛合金英语Hastelloy-N制造,其慢化剂是热解石墨英语pyrolytic graphite。MSRE于1965年达到临界,运行了四年。MSRE的燃料是LiF-BeF2-ZrF4-UF4(65-30-5-0.1),石墨堆芯慢化,第二级冷却剂是FLiBe(2LiF-BeF2)。MSRE温度达到摄氏650 °C,运行时间相当于满功率运行1.5年。

最近的进展[编辑]

液态盐甚高温反应堆[编辑]

截至2010年9月 (2010-09),利用熔融盐作为冷却剂的反应堆方面的研究一直在持续。传统熔盐堆和甚高温反应堆英语very high temperature reactor(Very High Temperature Reactor, VHTR)都被视作可能的设计方案纳入到第四代堆初步研究(GEN-IV)框架下。当前正在被研究的VHTR版本之一是液态盐甚高温反应堆(Liquid Salt Very High Temperature Reactor, LS-VHTR),一般也被称为先进高温堆(Advance High Temperature Reactor, AHTR)。[來源請求] 本质上,它是主回路不采用氦回路,而采用液态盐作为冷却剂的标准VHTR设计方案。它依赖于分布在石墨中的“TRISO”燃料。早期,AHTR关于石墨的研究集中在六角形石墨慢化块的插入石墨棒的形式,但如今的研究主要集中在鹅卵石式的燃料形式。[來源請求] LS-VHTR有许多吸引人的特性,包括:在甚高温度下工作的能力(大部分LS-VHTR所考虑的熔融盐的沸点都在1400 °C以上),低压冷却更容易匹配气生产厂条件(多数热化学循环英语thermochemical cycle要求温度超过750 °C),比相似工作条件下的氦冷VHTR有更好的电能转换效率,属于被动安全英语passive nuclear safety系统,以及意外事故中更好的裂变产物保持能力。[4]

液氟钍反应堆[编辑]

富士反应堆英语Fuji Molten Salt Reactor為一種迷你熔盐堆是电功功率100MWe的熔盐燃料钍燃料循环热增殖堆,采用与橡树岭国家实验室反应堆相类似的技术。它由日本、美国和俄罗斯联合开发。作为一个增殖堆,它将钍转换为核燃料。作为热谱反应堆,它的中子调节是固有安全的。与所有熔盐堆一样,它的堆芯是化学惰性的,工作在低压条件下,这可以防止爆炸和有毒物释放。一个全尺寸反应堆有望在20年内被开发出来,[5] 但该项目似乎缺少资金支持。[6]

2017年底央視透漏中國大陸正在研製[7]軍用熔鹽反應爐,可望用於船艦甚至大型飛機上,報導表示冷戰時期美蘇放棄此一技術並非是因為不可行,而是為了將有限預算放在能產生核武原料的壓水堆上,熔鹽爐無法設計成製造核武,廢料數量極少(降為千分之一)也無法或極難再提煉對於核不擴散有助益,但不符那個核戰年代的要求,而現在時代已經變換,同時最難的問題點是熔鹽腐蝕性問題,當年的材料工程技術不比現代,所以熔鹽爐新時代可能已經來臨,而中國在钍礦的蘊藏量居世界前列,也是一大優勢與動機。

参见[编辑]

参考文献[编辑]

  1. ^ Williams, Stephen. Molten Salt Reactors: The Future of Green Energy?. ZME Science. 16 January 2015 [18 February 2015]. 
  2. ^ http://www.world-nuclear.org/info/Current-and-Future-Generation/Molten-Salt-Reactors/
  3. ^ Rosenthal, Murry. An Account of Oak Ridge National Laboratory's Thirteen Nuclear Reactors, ORNL/TM-2009/181.
  4. ^ Fluoride Salt-Cooled High-Temperature Reactor 互联网档案馆存檔,存档日期2012-09-25. Workshop Announcement and Call for Participation, c. September 2010, at Oak Ridge National Laboratory, Oak Ridge Tennessee, USA. Accessed 18 March 2013
  5. ^ Fuji Molten salt reactor. nextbigfuture.com. 19 December 2007
  6. ^ Barton, Charles (March 2008) Interview with Ralph Moir at Energy From Thorium blog
  7. ^ 央視官方頻道-熔鹽反應爐

延伸阅读[编辑]

外部链接[编辑]