e進位

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書

記數系統
印度-阿拉伯數字系統
西方阿拉伯數字
阿拉伯文數字
高棉數字
孟加拉數字
印度數字
波羅米數字
泰語數字
漢字文化圈記數系統
中文數字
閩南語數字
越南語數字
算籌
日語數字
韓語數字
蘇州碼子
字母記數系統
阿拉伯字母數字
亞美尼亞數字
西里爾數字
吉茲數字
希伯來數字
希臘數字
阿利耶波多數字
其它記數系統
阿提卡數字
巴比倫數字
古埃及數字
伊特拉斯坎數字
瑪雅數字
羅馬數字
熙篤會數字
卡克托維克數字
底數區分的進位制系統
1 2 3 4 5 6 8 9 10 11 12
16 20 36 60

e進制是以自然對數底數——e作為進位制底數進制。類似於三進制,通常使用0、1、2三個數字來表達,但由於除了0、1和2之外大部分的整數在e進制中皆需要用無窮小數來表示,因此不是一個實用的進位制,但在底數經濟度模型中,e進制被認為是最高效率的進位制[1][2]

性質[編輯]

在e進制中,自然對數的行為與十進制中的常用對數類似[3],例如:

e進制效率[編輯]

底數經濟度模型中,e進制被認為是最高效率的進位制。

當一個數用進位()表達時,每個位數需要種符號表達,若要表達一個n位數字要儲存的元素

進制系統中表示的n位數的資訊量)則有:

因此,在進制系統中以n位數能表示I的信息量所需的存儲元素數為:

之下,求出哪個能使最小即可, 即找到能使微分為0的

解得

因此解得以為底的進位制理論上能有最高的表達效率。

與其他進制比較[編輯]

e進制中,除了0、1和2之外,其他整數皆需要以無窮不循環小數來表達,其中整數部分可透過貪婪演算法找出[4]

部分的e進制數[5]
十進制 二進制 e進制 三進制
1 1 1 1
2 10 2 2
3 11 10.0200 1120 0001 0101 10
4 100 11.0200 1120 0001 0101 11
5 101 12.0200 1120 0001 0101 12
6 110 20.1110 1110 2102 0120 20
7 111 21.1110 1110 2102 0120 21
8 1000 100.1120 1011 1100 0100 22
9 1001 101.1120 1011 1100 0100 100
10 1010 102.1120 1011 1100 0100 101
11 1011 110.2101 0102 0201 2102 102
12 1100 111.2101 0102 0201 2102 110

無理數的e進制表示[編輯]

常見無理數的e進制表示如下:

參見[編輯]

參考文獻[編輯]

  1. 伊東規之『マイクロコンピュータの基礎』日本理工出版會
  2. 桜井進『超・超面白くて眠れなくなる數學』PHP研究所
  1. ^ 田崎三郎. 『三』 の研究. 松山大學論集. 2011, 23 (3): 5––34. 
  2. ^ Hayes, Brian, Third base, American Scientist, 2001, 89 (6): 490–494 [2019-06-17], doi:10.1511/2001.40.3268, (原始內容存檔於2016-03-24) 
  3. ^ Weird Number Bases. DataGenetics. [2018-02-01]. (原始內容存檔於2018-02-03). 
  4. ^ Bryan Jacobs, Sloane, N.J.A. (編). Sequence A105116 (The part of n left of the decimal point when written in base e). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  5. ^ Kak, Subhash. The base-e representation of numbers and the power law (PDF). Circuits, Systems, and Signal Processing (Springer). 2021, 40 (1): 490–500 [2022-11-03]. (原始內容存檔 (PDF)於2022-11-03).