跳转到内容

蝴蝶效应

本页使用了标题或全文手工转换
维基百科,自由的百科全书
图一说明劳伦兹1963 模式英语Lorenz_system对初始条件敏感依赖的特性。控制组的初始位置为 (X,Y,Z)=(0,1,0),平行对照组在 Y 的初始位置中添加一个小扰动(10-10)。控制组和平行对照组的轨迹分别以红色和蓝色曲线绘制。灰色曲线显示控制组在不同二维的相位空间中的轨迹。σ = 10, ρ = 28, and β = 8/3.

蝴蝶效应(英语:Butterfly effect)在混沌学中,是指系统的演变,对初始条件有非常敏感的特性(sensitive dependence of solutions on initial conditions, SDIC)[1][2]。也就是说,在一个动态系统中,初始条件的细微变化,会导致不同事件发展的顺序,有显著差异。常见延伸的看法是:初始条件的微小变化,能带动整个系统长期且巨大的链式反应[3]

由来

[编辑]

1961年冬天,美国气象学家爱德华·罗伦兹在使用计算机程序计算他所设计来模拟大气中空气流动的数学模型,在进行第二次计算时,想要节省计算资源,直接从程式的中段开始执行,并输入前一次模拟结果打印出来的数据,计算出来的结果却与第一次完全不同。经检查后发现原因是出在打印的数据是0.506,精准度只有小数后3位,但该数据正确的值为0.506127,到小数后6位。

1963年,罗伦兹发表论文《决定性的非周期流》(Deterministic Nonperiodic Flow),分析了这个效应。这篇论文后来被广泛引用。[1][4]他也在另一篇期刊文章写道,“一个气象学家提及,如果这个理论被证明正确,一只海鸥扇动翅膀能够永远改变天气变化。”[5]在以后的演讲和论文中他用了更加有诗意的蝴蝶。对于这个效应最常见的阐述是“一只蝴蝶在巴西轻拍翅膀,可以导致一个月后德克萨斯州的一场龙卷风。”,等于一个小事情的影响可以很大。

在1993 年出版的《混沌的本质》一书中[2],劳伦兹将蝴蝶效应定义为:“动力系统状态的微小变化,将导致后续的状态,与原本可能演变的状态有很大的不同。”此一描述和“对初始条件的敏感依存”相同[1]。在同一本书中,劳伦兹应用了滑雪活动,来揭示“随时间变化的滑雪路径对初始位置的敏感性”[2][6]。而所谓的预报度,可借由系统中的连续依存和敏感依存之间,来加以决定。[7]简单地说,当两个初始相邻的路径出现明显分歧之前,我们可以决定有限的预报度。

含义

[编辑]

延伸的“蝴蝶效应”是连锁效应的其中一种,即意思即使一件表面上看来毫无关系、非常微小的事情,也可能带来巨大的改变。此效应说明事物发展的结果,对初始条件具有极为敏感的依赖性,初始条件的改变,将会有引起结果的极大差异。小事情会有巨大的反应。

蝴蝶效应一词的出处,现有的文献已有很多的讨论。而其函义也有所不同。单就劳伦兹的研究文章和报告中的讨论(如[1][2][3][8]),基本可以有以下三种不同类型[9][10]。第一类型的蝴蝶效应是指:系统中解的演变,对初始条件有敏感的依存[1]。第二类型的蝴蝶效应是指:微小扰动能在远距离产生有组织的环流[3]。第三类型的蝴蝶效应是指:小尺度的加入,透过非线性相互作用,能导致有限的预报度[11]

在最近由《今日物理》发表的讨论中[12][13],一致显示第二类蝴蝶效应从未使用真实的天气模型进行严格验证。虽然这些研究表明,第二类蝴蝶效应在实际大气中不太可能发生,但这种无效性并不否定第一类蝴蝶效应在其他领域(如疫情或历史事件)中的适用性[14]

图示

[编辑]
劳伦兹吸引子的蝴蝶效应
时间0 ≤ t ≤ 30(放大) z坐标(放大)
图二(左图)和图三(右图)展示出劳伦兹吸引子中,两条轨迹(蓝色、黄色各一)在三维相位空间中演变的三个时段。 这两条轨迹的初始点只在X坐标上相差10-5。开始时,正如蓝色和黄色轨迹的Z坐标的微小差异所表明的,两条轨迹似乎是重合的。但是当t > 23时,两者的坐标差逐步地变大。在t =30后,小锥形体(图三) 的出现,显示两条轨迹有非常大的差异。
劳伦兹吸引子动画页面存档备份,存于互联网档案馆)。加入日期2023-03-01

连续依存和敏感依存

[编辑]

图一和图三说明初始条件敏感依存(即SDIC)的特性[7]。在图一中,X-Z二维相位空间的图案近似展翼的蝴蝶[2][10]。而在图三中,控制组和平行对照组显示,在初始时段内(例如 t < 20),他们的轨迹几乎相同。此特征称为对初始条件的连续依存(continuous dependence of solutions on initial conditions, CDIC)。因此,在混沌系统中,连续依存(CDIC)和敏感依存(SDIC)可以先后发生。连续依存和敏感依存的组合,决定了可预报度的范围。即,可预报度的上限,是由敏感依存开始发生之前所决定[7][10]。当两个轨迹的初始位置相近时,他们的轨迹在短时间间隔内,会保持接近。但随着时间的推移,两个轨迹不会保持接近。前者代表连续依存代表,而后者是敏感依存。

数学定义

[编辑]

除了解的存在性和唯一性,连续依存是平滑微分方程另一个重要的特性。设函数G定义在Rn中的开放集合U上,假G在U上的变数V中有利普希茨 (Lipschitz)常数L。设VW为微分方程dV/dt=G(V)的解,和[to, t1]代表两个解存在的时间间隔。则,在时间间隔内(to ≤ t ≤ t1),以下关系显示连续依存:

上述说明:两个(附近的)轨迹可能会发散,但在有限的时间间隔内,不会比指数更快地分开[7]。在这里,VW可以是标量或矢量。


t 增加时,任意接近的点分离,则具有矢量场(演变映射)动态系统表现出初始条件的敏感依赖性。若M是映射的状态空间,那么当满足以下条件时,称表现出初始条件的(弱)敏感依赖性:[15]

  • 存在δ>0,使得对M中每点x和包含x的任意邻域N
  • 都存在来自这一邻域N的一点y和时间τ,使得:
  • 距离

定义不要求来自一个邻域的全部点都与基点x分离。

另一种较强的敏感依赖性,涉及系统的最大李亚普诺夫指数[15][16]

李亚普诺夫指数

[编辑]

李亚普诺夫指数代表着两个轨迹发散速率(rate of divergence)长时间的平均值。在既有的文献中,有研究学者,使用下列数学式子: exp(Lt) 来说明两个轨迹收缩或发散的特性。这里,指数函数的参数L代表李亚普诺夫指数。当L是负的,指数函数随时间非线性递减。当L是正的,指数函数随时间非线性递增。后者意味着,两个轨迹发散的“长时间平均值”呈指数增长。然而,既有的文献中,也显示,在一个混沌系统中,尽管两个轨迹发散速率长时间平均值是正的,但在给定的任一时间,两个轨迹可以是随着时间发散或收缩的[7][9]


李亚普诺夫指数的数学定义为:

T 是积分时间长度,, 是整数,。s 表示解的矢量,例如 代表控制组和平行对照组两个轨迹之间的距离。代表两个轨迹最初的距离。


有限时间(finite-time)李亚普诺夫指数的定义为:

它与时间积分间隔、初始位置,以及初始轨迹的差异相关。


而以上,我们可以获得的关系如下:

[9]


沿不稳定轨迹位移的最大的扩展方向,通过有限时间李亚普诺夫指数和 ,我们可以定义局部(local)李亚普诺夫指数:

[17]

有界性

[编辑]

一个混沌系统,至少拥有一个正的李亚普诺夫指数。但是一个正的李亚普诺夫指数,只是混沌系统的必要条件之一。另一个必要条件是,解有上限(即,有界的,bounded)。举例来说,图一到图三,所有的解均是有界的。因此,两条轨迹的差异是有界的(图三)。另一个简单的例子如下。考虑最单纯的线性常微分方程,y'= a y 和 a > 0,再加上初始条件 y(t = 0) = yo。这个系统的解,y = yo exp(at),是指数函数。因此,系统的解随时间非线性增加。虽然李亚普诺夫指数是正的 ,然而,由于系统是线性的,解不可能是混沌的。而一个简单的验证是,这个解不是有界的[16]

复发性

[编辑]

在以下讨论中,我们介绍不仅超越周期性、而且包括准周期性和混沌的复发性(recurrence)概念。[18]当相位空间中两个状态在时刻 i 和 j 的距离低于一个特定的临界值ε,复发性可以被定义。[19][20]所谓的复发时间,是指轨迹回到先前访问过的状态附近所需的时间。而非零的临界值 (non-zero ε) 的存在,表明系统经历了复发,但不一定是到先前造访过的同一个状态。混沌系统中的复发性,源自于解的有界性和两两轨迹的发散性。

通俗但不准确的比喻

[编辑]

蝴蝶效应中最主要的特性是,对初始条件的敏感依赖性。长久以来,人们使用民谣《只因少了一颗钉[21],进行了说明:

少了马蹄钉,失了马蹄铁。
少了马蹄铁,失了战马。
少了战马,失了骑手。
少了骑手,失了情报。
少了情报,失了胜仗。
少了胜仗,失了王国。
而这一切都是因为少了个马蹄钉。

基于以上所述,许多人错误地认为:初始微小扰动的影响,会随时间单调增加,以致于,任何微小的扰动最终都会产生巨大影响。然而,在2008年,混沌理论之父劳伦兹表示,他并不认为以上民谣足以描述真正的混沌。事实上,民谣只是说明了较为简单的不稳定现象。而且,这民谣暗示后续的小事件不会逆转结果(Lorenz,2008 [22])。据分析,该诗句只展示轨迹的发散特性,而并未掌握轨迹只在有限的范围内的特性[10]。轨迹在有限范围内的特性[1][22],可由蝴蝶有限的双翼所显示。[2][23][24][25]在最近的一项研究中[26],上述民谣的特征被称为“有限时间的敏感依存”。

劳伦兹对预报度极限的观点

[编辑]

根据 Lighthill (1986)的分析[27],SDIC(普遍称为蝴蝶效应)的存在,意味着混沌系统的预报度有限的。在一份文献回顾[28]中指出,劳伦兹对预报度极限的观点,可以总结为以下陈述:

  1. 劳伦兹采用1963年的模型,定性地揭示了大气等混沌系统中,有限预报度的本质。然而,模型并未确定大气可预报度的确切上限。
  2. 在1960年代,根据实际模型中五天倍增时间的估算,最初推估了两周的可预报度。此后,这一发现记录在 Charney 等人1966的论文[29],并成为共识。

相关讨论,以下由申等完成的短视频[30],有精简的文献回顾。

最近的一项研究再次强调,两周预报度的极限,是在1960年代使用Mintz-Arakawa模型的五天倍增时间计算得出。这项研究将两周预报度的极限,称为“可预测度极限假说”[31]。这个术语是受到摩尔定律的启发,是基于Charney的领导下,Lorenz、Mintz和Arakawa共同合作的贡献。这假说的概念,提供理论基础,支持使用偏微分方程(PDE)的物理方法和人工智能(AI)技术,来进行延长范围预测的研究。

劳伦兹对混沌模式与混沌解的开创性贡献

[编辑]

在他的职业生涯中,劳伦兹教授共撰写了61篇研究论文,其中58篇完全由他独自撰写(陈关荣[32])。从1960年的日本会议开始,劳伦兹踏上了一段发展许多模式的旅程,旨在揭示SDIC和混沌特性。最近,一份对劳伦兹从1960年到2008年的模式的回顾显示[33],他善于运用各种物理系统来说明混沌现象。这些系统包括准地转系统、涡度守恒方程、瑞利-贝纳德对流方程、和浅水波方程。此外,劳伦兹还非常早应用罗吉斯蒂映射,来探索混沌解。他比同行更早取得重要的里程碑(例如他在1964年发表的论文[34])。

大语言模型的幻觉和蝴蝶效应

[编辑]

AI大语言模型的幻觉,是指其回答的内容,会出现与最初问题无关的现象。或是,回答内容,不在最初训练资料的范畴内。

对于前者,最近有一个有趣的假设,该假设将不按常理出现的幻觉,类比于蝴蝶效应[35]

蝴蝶效应指系统的演变,对于初始条件有非常敏感的特性(sensitive dependence of solutions on initial conditions, SDIC)。一般而言,在混沌系统中,先出现解的连续依存(continuous dependence of solutions on initial conditions, CDIC),然后SDIC会突然的出现。连续依存的时间间距,可以决定预报长度,但其间距大小取决一些因素,包括初始状态及模式的参数[36]。一般而言,间距大小不易事先决定。此外,当系统包含共存吸引子(attractor coexistence), 即混沌与非混沌元素的共存,系统的最终状态,会出现对起始条件的依赖。这使得确定CDIC区间的任务变得复杂。在气象、气候模式预报,会使用集合预报(ensemble forecasts),或多种模式的预报,来决定有效的预报。这些方法,或许可以应用在大语言模式中,用来决定在幻觉之前的共同信息,该信息可以视为可靠的信息。

参见

[编辑]

参考文献

[编辑]
  1. ^ 1.0 1.1 1.2 1.3 1.4 1.5 Lorenz, Edward N. Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences. March 1963, 20 (2): 130–141 [3 June 2010]. Bibcode:1963JAtS...20..130L. ISSN 1520-0469. doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2. (原始内容存档于2020-05-29). 
  2. ^ 2.0 2.1 2.2 2.3 2.4 2.5 Lorenz, Edward. The Essence of Chaos. Seattle, WA, USA: University of Washington Press. 1993: 227. ISBN 978-0295975146. The thing that has made the origin of the phrase a bit uncertain is a peculiarity of the first chaotic system that I studied in detail. Here an abbreviated graphical representation of a special collection of states known as a “strange attractor” was subsequently found to resemble a butterfly, and soon became known as the butterfly. In Figure 2 we see one butterfly; a representative of a closely related species appears on the inside cover of Gleick’s book. A number of people with whom I have talked have assumed that the butterfly effect was named after this attractor. Perhaps it was. 
  3. ^ 3.0 3.1 3.2 Lorenz, Edward. Predictability: Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas? (PDF). MIT. 1972-12-29 [2022-07-09]. (原始内容 (PDF)存档于2022-01-05) –通过MIT. 
  4. ^ Google Scholar citation record. [2016-07-17]. (原始内容存档于2017-02-24). 
  5. ^ Lorenz, Edward N. The Predictability of Hydrodynamic Flow (PDF). Transactions of the New York Academy of Sciences. 1963, 25 (4): 409–432 [1 September 2014]. (原始内容存档 (PDF)于2014-10-10). 
  6. ^ Shen, Bo-Wen; Pielke, Roger; Zeng, Xubin; Cui, Jialin; Faghih-Naini, Sara; Paxson, Wei; Kesarkar, Amit; Zeng, Xiping; Atlas, Robert. The Dual Nature of Chaos and Order in the Atmosphere. Atmosphere. 2022-11-12, 13 (11) [2023-02-23]. ISSN 2073-4433. doi:10.3390/atmos13111892. (原始内容存档于2023-08-12) (英语). 
  7. ^ 7.0 7.1 7.2 7.3 7.4 Shen, Bo-Wen; Pielke, Roger A.; Zeng, Xubin. One Saddle Point and Two Types of Sensitivities within the Lorenz 1963 and 1969 Models. Atmosphere. 2022-05-07, 13 (5). ISSN 2073-4433. doi:10.3390/atmos13050753. 
  8. ^ Lorenz, Edward N. The predictability of a flow which possesses many scales of motion. Tellus. 1969-01-01, 21 (3). ISSN 0040-2826. doi:10.3402/tellusa.v21i3.10086. 
  9. ^ 9.0 9.1 9.2 Shen, Bo-Wen. Nonlinear Feedback in a Five-Dimensional Lorenz Model. Journal of the Atmospheric Sciences. 2014-04-28, 71 (5). ISSN 0022-4928. doi:10.1175/jas-d-13-0223.1. 
  10. ^ 10.0 10.1 10.2 10.3 Shen, Bo-Wen; Pielke, Roger A.; Zeng, Xubin; Cui, Jialin; Faghih-Naini, Sara; Paxson, Wei; Atlas, Robert. Three Kinds of Butterfly Effects within Lorenz Models. Encyclopedia. 2022-07-04, 2 (3). ISSN 2673-8392. doi:10.3390/encyclopedia2030084.  Text was copied or translated from this source, which is available under a Creative Commons Attribution 4.0 International License页面存档备份,存于互联网档案馆).
  11. ^ Palmer, T N; Döring, A; Seregin, G. The real butterfly effect. Nonlinearity. 2014-08-19, 27 (9). ISSN 0951-7715. doi:10.1088/0951-7715/27/9/r123. 
  12. ^ Pielke, Roger A.; Shen, Bo-Wen; Zeng, Xubin. Butterfly effects. Physics Today. 2024-09-01, 77 (9). ISSN 0031-9228. doi:10.1063/pt.ifge.djjy (英语). 
  13. ^ Palmer, Tim. Butterfly effects. Physics Today. 2024-09-01, 77 (9). ISSN 0031-9228. doi:10.1063/pt.oktn.zdwa (英语). 
  14. ^ Shen, Bo-Wen; Pielke, Roger; Xubin Zeng. Summary of Two Kinds of Butterfly Effects. 2024. doi:10.13140/RG.2.2.32401.24163 (英语). 
  15. ^ 15.0 15.1 扎尔塔, 爱德华·N (编). Section 1.2.5 Quantitative Definitions of Chaos, in "Chaos". 《斯坦福哲学百科全书》. 
  16. ^ 16.0 16.1 Shen, Bo-Wen. Aggregated Negative Feedback in a Generalized Lorenz Model. International Journal of Bifurcation and Chaos. 2019-03, 29 (03) [2023-02-27]. ISSN 0218-1274. doi:10.1142/S0218127419500378. (原始内容存档于2022-11-19) (英语). 
  17. ^ Eckhardt, Bruno; Yao, Demin. Local Lyapunov exponents in chaotic systems. Physica D: Nonlinear Phenomena. 1993-05, 65 (1-2). ISSN 0167-2789. doi:10.1016/0167-2789(93)90007-n. 
  18. ^ Thompson, J.M.T.; Stewart, H.B. Nonlinear Dynamics and Chaos, 2nd ed.. Hoboken, NJ, USA: John Wiley & Sons, Ltd. 2002: 437. 
  19. ^ Eckmann, J.-P; Kamphorst, S. Oliffson; Ruelle, D. Recurrence Plots of Dynamical Systems. Europhysics Letters (EPL). 1987-11-01, 4 (9). ISSN 0295-5075. doi:10.1209/0295-5075/4/9/004. 
  20. ^ Reyes, Tiffany; Shen, Bo-Wen. A recurrence analysis of chaotic and non-chaotic solutions within a generalized nine-dimensional Lorenz model. Chaos, Solitons & Fractals. 2019-08, 125. ISSN 0960-0779. doi:10.1016/j.chaos.2019.05.003. 
  21. ^ Gleick, James. Chaos: Making a New Science. Viking. 1987. ISBN 0-8133-4085-3. 
  22. ^ 22.0 22.1 Lorenz, E. N. The butterfly effect. In Premio Felice Pietro Chisesi E Caterina Tomassoni Award Lecture; University of Rome: Rome, Italy, 2008. (PDF). [2023-01-29]. (原始内容存档 (PDF)于2023-06-10). A related property of chaos is absence of true periodicity. For many systems, because the number of possible states, each differing more than a given amount from any of the others, is limited, we can be sure that if we wait long enough we shall encounter a state close to one that we have seen before, and we may think of the later state as the earlier one plus a small perturbation. 
  23. ^ Jordan, D.W.; Smith, S. Nonlinear Ordinary Differential Equations. An Introduction for Scientists and Engineers, 4th ed.. Oxford, UK: Oxford University Press. 2007: 490. 
  24. ^ Shen. On the Predictability of 30-Day Global Mesoscale Simulations of African Easterly Waves during Summer 2006: A View with the Generalized Lorenz Model. Geosciences. 2019-06-26, 9 (7) [2023-02-25]. ISSN 2076-3263. doi:10.3390/geosciences9070281. (原始内容存档于2023-07-26) (英语). Solution boundedness is indeed indicated by the finite size of the butterfly pattern for a chaotic solution. 
  25. ^ Shen, Bo-Wen. A Popular but Inaccurate Analogy for Chaos and Butterfly Effect. Encyclopedia. 2023-02-21 [2023-02-27]. (原始内容存档于2023-02-22). 
  26. ^ Saiki, Yoshitaka; Yorke, James A. Can the Flap of a Butterfly’s Wings Shift a Tornado into Texas—Without Chaos?. Atmosphere. 2023-05, 14 (5) [2023-05-04]. ISSN 2073-4433. doi:10.3390/atmos14050821. (原始内容存档于2023-05-28) (英语). 
  27. ^ The recently recognized failure of predictability in Newtonian dynamics. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences. 1986-09-08, 407 (1832). ISSN 0080-4630. doi:10.1098/rspa.1986.0082. 
  28. ^ Shen, Bo-Wen; Pielke, Roger A.; Zeng, Xubin; Zeng, Xiping. Lorenz’s View on the Predictability Limit of the Atmosphere. Encyclopedia. 2023-07-22, 3 (3) [2023-07-27]. ISSN 2673-8392. doi:10.3390/encyclopedia3030063. (原始内容存档于2023-08-12) (英语). 
  29. ^ The Feasibility of a Global Observation and Analysis Experiment. 1966-01-01. doi:10.17226/21272. 
  30. ^ Shen, Bo-Wen. Lorenz’s View on the Predictability Limit.. Encyclopedia Pub. 2023-09-13 [2023-09-13]. 
  31. ^ Shen, Bo-Wen; Pielke, Roger A.; Zeng, Xubin; Zeng, Xiping. Exploring the Origin of the Two-Week Predictability Limit: A Revisit of Lorenz’s Predictability Studies in the 1960s. Atmosphere. 2024-07-16, 15 (7). ISSN 2073-4433. doi:10.3390/atmos15070837 (英语). 
  32. ^ Chen, G.-R. Butterfly Effect and Chaos. (PDF). 2020-01-01 [2023-07-01]. (原始内容存档 (PDF)于2023-08-12). 
  33. ^ Shen, Bo-Wen; Pielke, Roger A.; Zeng, Xubin. The 50th Anniversary of the Metaphorical Butterfly Effect since Lorenz (1972): Multistability, Multiscale Predictability, and Sensitivity in Numerical Models. Atmosphere. 2023-08, 14 (8) [2023-08-16]. ISSN 2073-4433. doi:10.3390/atmos14081279. (原始内容存档于2023-08-16) (英语). 
  34. ^ Lorenz, Edward N. The problem of deducing the climate from the governing equations. Tellus. 1964-01, 16 (1). ISSN 0040-2826. doi:10.3402/tellusa.v16i1.8893. 
  35. ^ Shen, Bo-Wen. Special Issue Theme Topic: "Advances in Understanding the Butterfly Effect, Chaos, and Multiscale Dynamics in the AI Era": Reframing Predictability Through AI and Chaos Theory.. ResearchGate. 2024-04-04 [2024-04-04]. (原始内容存档于2024-04-04) (英语). 
  36. ^ Shen, Bo-Wen; Pielke, Roger A.; Zeng, Xubin; Baik, Jong-Jin; Faghih-Naini, Sara; Cui, Jialin; Atlas, Robert. Is Weather Chaotic?: Coexistence of Chaos and Order within a Generalized Lorenz Model. Bulletin of the American Meteorological Society. 2021-01, 102 (1). ISSN 0003-0007. doi:10.1175/BAMS-D-19-0165.1. 

延伸阅读

[编辑]

外部链接

[编辑]