乘法群
外观
例子
[编辑]- 整数模n乘法群是的可逆元与乘法形成的群。n是合数时,除了0之外还有其他不可逆元。
- 正数的乘法群是阿贝尔群,1是其单位元。对数是此群到实数加法群的群同构。
- 域F的乘法群是乘法下所有非零元的集合:。若F是q阶有限域(如是素数,且),则乘法群是循环群:。
单位根的群概形
[编辑]n次单位根的群概形是乘法群上n次幂映射的核,可视作群概形。即,对任意整数,可考虑乘法群上取n次幂的态射,并取适当的纤维积,其中态射e充当单位。
产生的群概形写作(或[1])。当且仅当K的特征不整除n时,将其放在域K上会产生既约概形,这使其产生未约概形(幂零元在其结构层中的概形)的一些重要例子,如p元有限域上的,p表示任意素数。
此现象不易用代数几何的经典语言表达。例如,它在表达特征p中的阿贝尔簇的对偶理论(皮埃尔·卡地亚的理论)时就显得非常重要。此群概形的伽罗瓦上同调是表示库默尔理论的一种方式。
另见
[编辑]注释
[编辑]- ^ Milne, James S. Étale cohomology. Princeton University Press. 1980: xiii, 66.
参考文献
[编辑]- Michiel Hazewinkel, Nadiya Gubareni, Nadezhda Mikhaĭlovna Gubareni, Vladimir V. Kirichenko. Algebras, rings and modules. Volume 1. 2004. Springer, 2004. ISBN 1-4020-2690-0