R語言
編程範型 | 多重編程範式:陣列式、物件導向、函數式、反射式、指令式、[1]過程式[2] |
---|---|
設計者 | 羅斯·伊哈卡和羅伯特·傑特曼 |
實作者 | R核心開發小組 |
面市時間 | 1993年8月 |
當前版本 |
|
型態系統 | 動態類型[4] |
文件擴展名 | |
網站 | www |
啟發語言 | |
S、Scheme、Lisp | |
影響語言 | |
Julia[7] | |
|
R語言是一種自由軟體程式語言與操作環境,主要用於統計分析、繪圖以及數據挖掘。R由新西蘭奧克蘭大學的統計學家羅斯·伊哈卡和羅伯特·傑特曼開發,現在由R核心小組負責開發,同時也有其他用戶編寫了諸多外掛的軟件包。R以S語言為基礎,其詞法作用域語義來自Scheme。R的後台程序大多由C語言、FORTRAN語言和R自己寫成。[8]
R語言是GNU計劃的一個項目,所以其原始碼可自由下載使用。R也有已編譯的執行檔版本可以下載,可在多種平台下運行,包括UNIX(也包括FreeBSD和Linux)、Windows和MacOS。[8]R可以以命令行操作,[8]同時有人開發了幾種圖形用戶界面,其中包括RStudio[8]與Jupyter。[9]
在TIOBE2022年1月對編程語言人氣的排名中,R排名第12。[10]
發展歷程
[編輯]R語言以S語言為基礎,增加了Scheme語言中詞法作用域這一機制,使程序員得以將代碼中某一對象的適用範圍限制到一小段代碼之中。[1]S由里克·貝克爾、約翰·錢伯斯、道格·鄧恩、瓊·麥克雷、以及朱迪·席林於1976年前後於貝爾實驗室發明。[11]S是一種用於數據分析的解釋型語言,無需編譯器即可運行。通常用S語言編寫的代碼都可以不作修改地在R環境下運行。[12]Scheme是Lisp語言的一個分支,[13]由傑拉爾德·J·薩斯曼和小蓋伊·L·斯蒂爾於1975年前後在麻省理工學院發明。[14]
1991年,新西蘭奧克蘭大學的統計學家羅斯·伊哈卡和羅伯特·傑特曼開始對S語言的一個新版本進行開發。[15]伊哈卡與傑特曼兩人名字首字母都是R,R語言因此得名。同時,R這個單一字母的名字也表明R語言與S語言一脈相承。[8]1993年8月,伊哈卡與傑特曼在數據平台StatLib和郵件列表s-news中發布了R的早期版本。1995年,在統計學家馬丁·梅克勒的建議下,伊哈卡與傑特曼通過GNU通用公共許可證把R做成了一款免費開源軟件。軟件於1995年6月進行了首次官方發布。[16]首個穩定測試版本(1.0)於2000年2月29日發布。[17]
R綜合檔案網(Comprehensive R Archive Network;CRAN)於1997年4月23日正式上線。CRAN除了收藏了R的執行檔下載版、原始碼和說明文件,也收錄了各種用戶撰寫的R軟件包。CRAN最早有3個鏡像以及12個軟件包。[18]截止2022年1月,CRAN有101個鏡像站[19]以及18728個軟件包。[20]
同樣在1997年,R核心小組正式成立,以進一步對R語言進行開發。截止2022年1月,小組成員包括伊哈卡、傑特曼、錢伯斯以及梅克勒,同時也包括了統計學家庫爾特·奧爾尼克、道格拉斯·貝茨、彼得·達爾高、盧克·蒂爾尼、弗里德里希·萊施、托馬斯·拉姆利、鄧肯·坦普爾·朗、邁克爾·勞倫斯、烏韋·利格斯、布萊恩·里普利、塞巴斯蒂安·邁耶、保羅·默雷爾、馬丁·普盧默、迪伊潘·薩卡爾、西蒙·烏爾巴內克以及計算機科學家托馬斯·卡利貝拉。[8]小組過去的成員包括塞思·福爾肯、圭多·馬薩羅托、鄧肯·默多克、馬丁·摩根、海納·施瓦特以及斯特凡諾·雅各斯。[21]2003年4月[22],一個名為R基金會的非盈利組織正式成立,為的是更好地對R語言的開發提供支持。[8]
內置功能
[編輯]R主要用於數據分析。在R語言中,用於信息存儲的數據結構包括向量、數組、列表以及數據框。向量指一組帶有固定順序, 數據類型唯一的字串或數值,其內容可以填寫到一維或多維的數組之中。二維數組也叫做矩陣。[23]R支持各種數組運算,與自由軟件GNU Octave和商業軟件MATLAB的功能有所重疊。[24][25]列表指一組數據類型可能有所不同的對象。一個字串向量與數值向量合在一起就可以成為一個列表。數據框本質上是一個列表,裡面包含了一個或多個長度相同的向量。數據框將這些向量合併成表格,每一縱列都有一個單一的名稱。[23]標量這一數據類型在R語言中並不存在,所謂的標量就是一個長度為一的向量。[26]
用戶可以用R來進行一些基本的統計檢驗,構建線性及非線性的模型,對時間序列加以分析,或對數據進行分類與聚類分析。R的另一強項是繪圖功能,畫出的圖表能夠達到專業出版物的要求,也可加入數學符號。計算強度較大時,用戶可在程序中嵌入C、C++以及FORTRAN語言以幫助運算。[27]
因為S的血緣,R比其他統計學或數學專用的編程語言有更強的物件導向(面向對象程序設計, S3, S4等)功能。
套件
[編輯]R的功能能夠透過由用戶撰寫的套件(Packages)增強。增加的功能有特殊的統計技術、繪圖功能,以及編程介面和數據輸出/輸入功能。這些軟件包是由R語言、LaTeX、Java及最常用C語言和Fortran撰寫。下載的執行檔版本會連同一批核心功能的軟件包,而根據CRAN紀錄有一萬多種不同的軟件包。其中有幾款較為常用,例如用於經濟計量、財經分析、人文科學與社會科學研究以及人工智能。[28]
發展
[編輯]生物信息學社群時常使用R進行分子生物學數據分析。Bioconductor計劃就是讓R作為基因圖譜分析工具。 Gnumeric開發者正和R開發者合作,改善Gnumeric計算結果的精確度。[29]
R新聞雜誌
[編輯]《R新聞雜誌》(R Newsletter)每年會出版兩至三次,為一份免費的電子雜誌,內容有關統計學軟件發展及R語言開發資訊。第一期在2001年一月出版。從2008年開始,被R Journal替代。[30]
例子
[編輯]基本語法
[編輯]下面的例子展示基本的語言語法和命令行界面使用。在R語言中,一般偏好採用兩字符合成箭頭的賦值算符<-
,但是在某些情況也可以使用=
[31][32]。
> x <- 1:6 # 在当前环境中创建数值向量。
> y <- x^2 # 基于在x中的值创建向量。
> print(y) # 打印向量的内容。
[1] 1 4 9 16 25 36
> z <- x + y # 创建是为x与y的和的新向量。
> z # 返回z的内容至当前环境。
[1] 2 6 12 20 30 42
> z_matrix <- matrix(z, nrow=3) # 创建将向量z转变为3x2矩阵对象的新矩阵。
> z_matrix
[,1] [,2]
[1,] 2 20
[2,] 6 30
[3,] 12 42
> 2*t(z_matrix)-2 # 转置这个矩阵,对每个元素乘以2,从矩阵中每个元素减去2,并返回结果至终端。
[,1] [,2] [,3]
[1,] 2 10 22
[2,] 38 58 82
> new_df <- data.frame(t(z_matrix), row.names=c('A','B')) # 创建包含来自转置的z_matrix的数据的新data.frame对象,具有横行名字'A'和'B'。
> names(new_df) <- c('X','Y','Z') # 设置new_df的纵列名字为X、Y和Z。
> print(new_df) # 打印当前结果。
X Y Z
A 2 6 12
B 20 30 42
> new_df$Z # 输出Z列。
[1] 12 42
> new_df$Z==new_df['Z'] && new_df[3]==new_df$Z # data.frame的Z列可以使用$Z、['Z']或[3]语法来访问,得到的值是相同的。
[1] TRUE
> attributes(new_df) # 打印关于new_df对象的特性信息。
$names
[1] "X" "Y" "Z"
$row.names
[1] "A" "B"
$class
[1] "data.frame"
> attributes(new_df)$row.names <- c('one','two') # 访问并接着变更row.names特性;还可以使用rownames()来完成。
> new_df
X Y Z
one 2 6 12
two 20 30 42
函數的結構
[編輯]R語言的力量之一是易於創建新函數。在函數體內的對象保持局部於這個函數,而且可以返回任何數據類型[33]。例如:
# 声明函数“f”具有参数“x”、“y“。
# 它返回x和y的线性组合。
f <- function(x, y) {
z <- 3 * x + 4 * y
return(z) ## 这里的return()函数是可选的。
}
> f(1, 2)
[1] 11
> f(c(1,2,3), c(5,3,4))
[1] 23 18 25
> f(1:3, 4)
[1] 19 22 25
建模和繪圖
[編輯]R語言對數據建模和圖形有內建支持。下列例子展示R語言如何輕易的生成並繪製帶有殘差的線性回歸模型。
> x <- 1:6 # 创建x和y值。
> y <- x^2
> model <- lm(y ~ x) # 线性回归模型y = A + B * x。
> summary(model) # 显示这个模型的深入总结。
Call:
lm(formula = y ~ x)
Residuals:
1 2 3 4 5 6 7 8 9 10
3.3333 -0.6667 -2.6667 -2.6667 -0.6667 3.3333
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -9.3333 2.8441 -3.282 0.030453 *
x 7.0000 0.7303 9.585 0.000662 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 3.055 on 4 degrees of freedom
Multiple R-squared: 0.9583, Adjusted R-squared: 0.9478
F-statistic: 91.88 on 1 and 4 DF, p-value: 0.000662
> par(mfrow = c(2, 2)) # 创建2乘2格局的图表。
> plot(model) # 输出这个模型的诊断图。
曼德博集合
[編輯]通過對方程z = z2 + c的前20次迭代計算曼德博集合的簡短R代碼,它針對不同的複數常量c而繪圖。這個例子展示了:
install.packages("caTools") # 安装外部包。
library(caTools) # 这个外部包提供write.gif函数。
jet.colors <- colorRampPalette(c("green", "pink", "#007FFF", "cyan", "#7FFF7F",
"white", "#FF7F00", "red", "#7F0000"))
dx <- 1500 # 定义宽度。
dy <- 1400 # 定义高度。
C <- complex(real = rep(seq(-2.2, 1.0, length.out = dx), each = dy),
imag = rep(seq(-1.2, 1.2, length.out = dy), dx))
C <- matrix(C, dy, dx) # 重制形状为复数的方块矩阵。
Z <- 0 # 初始化Z为零。
X <- array(0, c(dy, dx, 20)) # 初始化输出3D数组。
for (k in 1:20) { # 循环具有20次迭代。
Z <- Z^2 + C # 中心差分方程。
X[, , k] <- exp(-abs(Z)) # 捕获结果。
}
write.gif(X, "Mandelbrot.gif", col = jet.colors, delay = 100)
參考文獻
[編輯]- ^ 1.0 1.1 Morandat, Floréal; Hill, Brandon; Osvald, Leo; Vitek, Jan. Noble, James , 編. Evaluating the Design of the R Language. ECOOP 2012 – Object-Oriented Programming. Lecture Notes in Computer Science (Berlin, Heidelberg: Springer). 2012: 104–131 [2021-07-18]. ISBN 978-3-642-31057-7. doi:10.1007/978-3-642-31057-7_6. (原始內容存檔於2021-07-18) (英語).
- ^ White, Homer. Programming Paradigms. Beginning Computer Science with R. 2021-01-31 [2021-07-18]. (原始內容存檔於2021-07-18) (美國英語).
- ^ 3.0 3.1 彼得·達爾高. 4.4.2 is released. 2024年10月31日 [2024年11月1日] (英語).
- ^ jmount. Why I don’t like Dynamic Typing. Win Vector LLC. 2012-02-25 [2021-07-18]. (原始內容存檔於2021-07-17) (美國英語).
- ^ R scripts. mercury.webster.edu. [2021-07-17]. (原始內容存檔於2022-01-15).
- ^ R Data Format Family (.rdata, .rda). www.loc.gov. 2017-06-09 [2021-07-18]. (原始內容存檔於2021-07-17).
- ^ Introduction. The Julia Manual. [2018-08-05]. (原始內容存檔於20 June 2018).
- ^ 8.0 8.1 8.2 8.3 8.4 8.5 8.6 R FAQ. cran.r-project.org. [2021-07-18]. (原始內容存檔於2011-07-09).
- ^ Using the R programming language in Jupyter Notebook — Anaconda documentation. docs.anaconda.com. [2021-12-29]. (原始內容存檔於2022-04-26).
- ^ index | TIOBE - The Software Quality Company. www.tiobe.com. [2021-07-18]. (原始內容存檔於2018-02-25).
- ^ Becker, Richard A. A Brief History of S. [2022-01-03]. (原始內容存檔於2022-01-03).
- ^ R: What is R?. www.r-project.org. [2021-07-18]. (原始內容存檔於2011-07-19).
- ^ John M. Chambers. S, R, and Data Science. The R Journal. 2020, 11 (1): 462-476.
- ^ Sussman, Gerald Jay; Steele, Guy L. The First Report on Scheme Revisited. Higher-Order and Symbolic Computation. 1998-12-01, 11 (4): 399–404 [2022-01-03]. ISSN 1573-0557. doi:10.1023/A:1010079421970. (原始內容存檔於2023-09-15) (英語).
- ^ Academic unfazed by rock star status. NZ Herald. [2022-01-03]. (原始內容存檔於2022-04-11) (New Zealand English).
- ^ R : Past and Future History -- A Free Software Project. cran.r-project.org. [2022-01-03]. (原始內容存檔於2017-07-11).
- ^ Ross Ihaka. The R Project: A Brief History and Thoughts About the Future (PDF). Ross Ihaka. [2022-01-03]. (原始內容 (pdf)存檔於2018-02-02) (英語).
- ^ ANNOUNCE: CRAN. stat.ethz.ch. [2022-01-03]. (原始內容存檔於2021-03-08).
- ^ CRAN - Mirrors. cran.r-project.org. [2022-01-15]. (原始內容存檔於2022-05-10).
- ^ CRAN - Contributed Packages. cran.r-project.org. [2022-01-03]. (原始內容存檔於2022-04-11).
- ^ R: Contributors. www.r-project.org. [2022-01-03]. (原始內容存檔於2022-04-23).
- ^ Martin Mächler. Kurt Hornik. R Foundation News (PDF). The R Journal. 2014, 6 (2): 190-191 [2022-01-03]. (原始內容 (PDF)存檔於2022-01-20).
- ^ 23.0 23.1 Dalgaard, Peter. Basics. Dalgaard, Peter (編). Introductory Statistics with R. Statistics and Computing. New York, NY: Springer. 2008: 1–29. ISBN 978-0-387-79054-1. doi:10.1007/978-0-387-79054-1_1 (英語).
- ^ 存档副本. [2007-11-03]. (原始內容存檔於2009-08-08).
- ^ Han-feng Chen, Wai-Mee Ching, and Da Zheng. A Comparison Study on Execution Performance of MATLAB and APL (PDF). McGill University. [March 9, 2022]. (原始內容 (PDF)存檔於2022-03-03) (英語).
- ^ Data structures · Advanced R.. adv-r.had.co.nz. [2022-03-09]. (原始內容存檔於2016-09-20).
- ^ R: What is R?. www.r-project.org. [2022-03-09]. (原始內容存檔於2011-07-19).
- ^ 存档副本. [2007-06-04]. (原始內容存檔於2007-06-25).
- ^ Gnumeric, Team. Gnumeric 1.4 is Here!. The GNOME Project. 2004年12月19日 [2006-04-30]. (原始內容存檔於2006年10月5日).
- ^ 存档副本. [2007-06-04]. (原始內容存檔於2007-05-28).
- ^ R Development Core Team. Assignments with the = Operator. [2018-09-11]. (原始內容存檔於2019-01-08).
- ^ most used assignment operator in R is
<-
- R Development Core Team. Writing R Extensions. [2018-09-11]. (原始內容存檔於2019-01-06).
[...] we recommend the consistent use of the preferred assignment operator 『<-』 (rather than 『=』) for assignment.
- Google's R Style Guide. [2018-09-11]. (原始內容存檔於2019-01-11).
- Wickham, Hadley. Style Guide. [2018-09-11]. (原始內容存檔於2019-01-07).
- Bengtsson, Henrik. R Coding Conventions (RCC) – a draft. January 2009 [2018-09-11]. (原始內容存檔於2016-03-19).
- R Development Core Team. Writing R Extensions. [2018-09-11]. (原始內容存檔於2019-01-06).
- ^ Kabacoff, Robert. Quick-R: User-Defined Functions. statmethods.net. 2012 [2018-09-28]. (原始內容存檔於2019-01-07).