五维超正方体

维基百科,自由的百科全书
跳转至: 导航搜索
五维超正方体
(10-超胞)
5-体
5-cube t0.svg
Schlegel diagram
類型 五维凸正多胞体
家族 立方形
維度 5
四维 10 {4,3,3} Schlegel wireframe 8-cell.png
40 (4.4.4) Hexahedron.png
80 {4} Kvadrato.svg
80
頂點 32
顶点图 5-cube verf.png
正五胞体
施萊夫利符號 {4,3,3,3}
{4,3,3}x{}
{4,3}x{4}
{4,3}x{}x{}
{4}x{4}x{}
{4}x{}x{}x{}
{}x{}x{}x{}x{}
考克斯特符号 CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.png
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.png
類比 正方體
皮特里多边形 十邊形
對稱群 BC5, [3,3,3,4]
對偶多胞體 五维正轴体
特性

五维超立方体(Penteract)或称正十超胞体(Decateron)是3个五维凸正多超胞体之一,是五维的超方形,四维超正方体、三维正方体、二维正方形的五维类比。由10个四维超立方体胞、40个正方体胞、80个正方形面、80条棱、32个顶点组成。

几何性质[编辑]

五维超正方体存在于五维欧几里得空间中,其32个顶点有如下形式:
(±1,±1,±1,±1,±1)
五维超正方体是它们的凸包。它包含了所有坐标值绝对值都小于等于1的所有点。在它的顶点处有5条棱相交,应此它的顶点图正五胞体,在它的棱处有4个立方体维脊相交,应此它的棱图正四面体。它有施莱夫利符号{4,3,3,3},考斯特-迪肯符号CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png,它的对偶多超胞体是正三十二超胞体(Triacontaditeron),也叫五维正轴体(Pentacross,5-orthoplex)。

对称群构造[编辑]

作为五维的立方形,一个五维凸正多超胞体,它具有BC5对称群构造,对应施莱夫利符号{4,3,3,3},考斯特-迪肯符号CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png。同时,它可被看作是四维超正方体的棱柱,对应施莱夫利符号{4,3,3}×{},考斯特-迪肯符号CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png。并且,它还是正方形和立方体的乘积,在3个维度有立方体的对称性BC3,而在另外两个维度表现出正方形的对称性BC2,施莱夫利符号{4,3}×{4},考斯特-迪肯符号CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png

图像[编辑]

五维超立方体可以以自身的BCn(n≤5)对称性被平行投影到2维平面上:

正交投影
考克斯特平面 B5 B4 / D5 B3 / D4 / A2
图像 5-cube t0.svg 5-cube t0 B4.svg 5-cube t0 B3.svg
二面体群 [10] [8] [6]
考克斯特平面 使棱在前 B2 A3
图像 5-cube column graph.svg 5-cube t0 B2.svg 5-cube t0 A3.svg
二面体群 [2] [4] [4]
更多正交投影
2d of 5d 3.svg
斜线架投影
5-cubePetrie.svg
B5考克斯特平面
Graph
Penteract graph.svg
顶点—棱图象.
透视投影
Penteract projected.png
五维超立方体的5D到4D施莱尔投影的4D到3D球极投影的3D到2D透视投影

在五维空间旋转的透视投影

相关链接[编辑]

參考文獻[编辑]

五维正多胞体
五维正六胞体 五维超正方体 五维正三十二胞体
{3,3,3,3} {4,3,3,3} {3,3,3,4}